\qquad
\qquad
For problems 1-11, show all your work, and write your answer in the blank provided. Each problem is worth 6 points. You can earn 0,3 , or 6 points on each problem. Sufficient work must be shown to receive credit.

1. Convert the polar coordinates $\left(6, \frac{2 \pi}{3}\right)$ to rectangular coordinates.
2.
3. Find the directrix of the parabola $y^{2}=-6 x$.
4. \qquad
5. Suppose $z_{1}=4 e^{-\frac{\pi i}{6}}$ and $z_{2}=2 e^{\frac{2 \pi i}{3}}$.

Compute $\frac{z_{1}}{z_{2}}$ and express your answer in polar form.
3. \qquad
4. Find the foci of the conic section $x^{2}-\frac{y^{2}}{9}=1$.
4.
5. Convert the parametric equations $x=2 t, y=t^{2}-1$, to an equation in x and y only.
5. \qquad
6. Find the length of the minor axis of the ellipse with center $(0,0)$, focus $(0,3)$, and vertex $(0,5)$.
6. \qquad
7. Find an appropriate first quadrant angle θ (in radians) so that a rotation of axes by θ transforms the equation $4 x^{2}+2 \sqrt{3} x y+2 y^{2}=25$ into a new equation of the form $a u^{2}+c v^{2}+d u+e v+f=0$.
(You just need to find θ, not the new equation.)
7. \qquad
8. Find the vertex of the parabola $x^{2}-4 x=2 y$.
8. \qquad
9. (a) Express the complex number $1+i$ in polar form.

> 9.(a)
(b) Compute $(1+i)^{20}$ and express your answer in standard form $a+b i$. Be sure to show your work.
(b)
10. Convert the equation $r=2$ to an equation in rectangular coordinates.
10. \qquad
11. A rotation of axes by the angle $\theta=\frac{\pi}{4}$ transforms the equation $x^{2}+2 x y+$ $y^{2}+6 \sqrt{2} x-6 \sqrt{2} y=0$ into the equation $u^{2}=6 v$. Sketch this conic section, showing the rotation (i.e., draw and label the u and v axes, and draw the conic section).

For problems 12 and 13, match the graphs with their corresponding equations. Write the letter of the corresponding equation below each graph. 2 points for each correct answer. You do not need to show any work.
12.
(a) $\left\{\begin{array}{l}x=3 \cos \theta, \\ y=2 \sin \theta\end{array}\right.$
(b) $\frac{x^{2}}{4}+\frac{y^{2}}{9}=1$
(c) $\frac{(x-2)^{2}}{4}+\frac{y^{2}}{4}=1$
(d) $r=4 \sin \theta$

13. (a) $\frac{x^{2}}{4}-\frac{y^{2}}{9}=1$
(b) $\frac{(y+1)^{2}}{4}-(x-3)^{2}=1$
(c) $\left\{\begin{array}{l}x=-3+\sec \theta, \\ y=1+2 \tan \theta\end{array}\right.$
(d) $\frac{y^{2}}{9}-\frac{x^{2}}{4}=1$

For problems 14 and 15 below, you must show all of your work in the space provided. Partial credit is possible on these problems. Each problem is worth 9 points.
14. Find the equation of the form $\frac{(x-h)^{2}}{p^{2}}+\frac{(y-k)^{2}}{q^{2}}=1$ for the ellipse with center $(1,-2)$, vertex $(1,1)$, and length of minor axis equal to 4 .
15. Find all four fourth roots of the complex number $16 e^{\frac{4 \pi i}{3}}$. Write your answers in standard form $a+b i$, and graph the roots on the complex plane.

