Durga Paudyal

Title(s):

Adjunct Associate Professor and Ames Laboratory Scientist II
Electrical and Computer Engineering
Ames Laboratory

Office

Metals Dev
2415 Pammel Dr
Ames, IA 500111015

Office

223 Metals Dev
2415 Pammel Dr
Ames, IA 50011-1015

Information

Ph.D., Theoretical Condensed Matter Physics, 2005; Post Doctoral Research Associtae at Ames Lab, 2004 to 2008; Ames Laboratory Scientist 2008 to date.

Current Research: 1) Quantum information materials and engineering including quantum communication, quantum sensing, and quantum computing; 2) Magnetism and magnetic materials and phenomena including permanent magnetism, magnetocaloric effect and 2D quantum magnetism; 3) Topological quantum materials including 2D; 4) Quantum phononics and quantum magnonics;  5) Magnetic and quantum phenomena with rare-earth-based materials;  6) Development of electronic structure methods at finite temperature; 7) Coupling of machine learning to ab-initio methods to predict new materials and properties.

Publications

Google Scholar Profile: Refereed journal publications

  • Bhandari and D. Paudyal, Enhancing stability and magnetism of ThMn12-type cerium-iron intermetallics by site-substitution, Phys. Rev. Research 4, 023012 (2022). https://doi.org/10.1103/PhysRevResearch.4.023012
  • Kademane, C. Bhandari, D. Paudyal, S. Cottrell, P. Das, Y. Liu, Y. Yiu, C. M. N. Kumar, K. Siemensmeyer, A. Hoser, D. L. Quintero-Castro, D. Vaknin, and R. Toft-Petersen, Magnetization reversal driven by electron localization-delocalization crossover in inverse spinel Co2VO4, Phys. Rev. B 105, 094408 (2022). https://doi.org/10.1103/PhysRevB.105.094408
  • UCar, D. Paudyal, and K. Choudhary, Machine learning predicted magnetic entropy change using chemical descriptors across a large compositional landscape, Computational Materials Science 209, 111414 (2022). https://doi.org/10.1016/j.commatsci.2022.111414
  • Limbu, G. C. Kaphle, A. L. Karn, N. K. Shah, H. Paudyal, and D. Paudyal, Electronic structure and magnetism of pristine, defected, and strained Ti2N MXene, J. Magn. Magn. Mater. 563, 169895. https://doi.org/10.1016/j.jmmm.2022.169895
  • B. Sharma, I.A. Qattan, M. Jaishi, and D. Paudyal, Penta-SiCN: A Highly Auxetic Monolayer, ACS Appl. Electron. Mater. 4, 2561 (2022). https://doi.org/10.1021/acsaelm.2c00265
  • W. Qureshi, M. A. Ali, X. Ma, G. Tang; M.U. Javed, and D. Paudyal, Verification and unraveling the electronic and physical properties of bulk and (001)-surfaces of newly synthesized Ti2ZnX (X = C, N) MAX phases, Surfaces and Interfaces 31, 102032 (2022). https://doi.org/10.1016/j.surfin.2022.102032
  • W. Qureshi, X. Ma, G. Tang, and D. Paudyal, Investigating a novel magnetic MAX phase nitride and its (001)-surfaces, Materials Today Communications 31, 103456 (2022). https://doi.org/10.1016/j.mtcomm.2022.103456
  • B. Sharma, S. KC, and D. Paudyal, Enhanced Optoelectronic and Elastic Responses in Fluorinated penta-BCN, Applied Surface Science 593, 153239 (2022). https://doi.org/10.1016/j.apsusc.2022.153239
  • B. Sharma, R. C. Bhatta, R. Adhikari, and D. Paudyal, Strain effect on structural, mechanical, and optoelectronic properties of penta-BCN, Carbon Trends 7, 100162 (2022). https://doi.org/10.1016/j.cartre.2022.100162
  • W. Qureshi, X. Ma, G. Tang, R. Paudel, D. Paudyal, Theoretical predictive screening of noble-metal-containing M3AuC2 (M = Ti, V, and Cr) MAX phases, Computational Materials Science 202, 111013 (2022). https://doi.org/10.1016/j.commatsci.2021.111013

Departments

Affiliations

Loading...