Ming-Chen Hsu
Email: jmchsu@iastate.edu
Phone: 515-294-4632
Title(s):
Professor
Mechanical Engineering
Office
2032 Black Engr.
2529 Union Dr.
Ames, IA 50011
Information
Links
Education
- PhD, Structural Engineering, University of California, San Diego, September 2012
- MS, Aerospace Engineering and Engineering Mechanics, The University of Texas at Austin, May 2008
- MS, Engineering Science and Ocean Engineering, National Taiwan University, June 2005
- BS, Engineering Science and Ocean Engineering, National Taiwan University, June 2003
Fellowships, Awards, and Honors
- 2020 Web of Science Highly Cited Researcher in Cross-Field
- 2020 CoE Award for Early Achievement in Research
- 2019 USACM Gallagher Young Investigator Award
- 2019 Web of Science Highly Cited Researcher in Cross-Field
- 2018 Web of Science Highly Cited Researcher in Computer Science
- 2017 Web of Science Highly Cited Researcher in Engineering
- 2017 Web of Science Highly Cited Researcher in Computer Science
- 2016 Web of Science Highly Cited Researcher in Computer Science
- 2013 UCSD Chancellor’s Dissertation Medal
Leadership and Services
- Chair, Isogeometric Analysis Technical Thrust Area Committee, U.S. Association for Computational Mechanics (USACM), July 2023–present.
- Chair, Computational Fluid Dynamics and Fluid–Structure Interaction Technical Thrust Area Committee, U.S. Association for Computational Mechanics (USACM), July 2019–July 2021.
- Chair, Technical Committee on Computational Fluid–Structure Interaction, Applied Mechanics Division, American Society of Mechanical Engineers (ASME), July 2016–July 2019.
- Conference Organizer, 2022 USACM Thematic Conference on Isogeometric Analysis (IGA 2022), Banff, Canada, November 6–10, 2022.
- Conference Organizer, Virtual Isogeometric Analysis 2020 (VIGA 2020), August 11–12, 2020.
Research Interests
- Computational Mechanics, Engineering, and Sciences
- Fluid–Structure Interaction (FSI)
- Aerospace, Biomedical, and Wind Energy Applications
- Isogeometric Analysis (IGA)
- Immersogeometric Analysis (IMGA)
- Finite Element Methods (FEM)
- Mechanics of Thin-Shell Structures
- Aeroelasticity
- Biomechanics
- Turbulent Industrial Flows
- Parametric Modeling, Design and Optimization
- High-Performance Computing
Publications
2021
- Liu N*, Johnson EL, Rajanna MR, Lua J, Phan N, Hsu M-C. Blended isogeometric Kirchhoff–Love and continuum shells. Computer Methods in Applied Mechanics and Engineering, 385:114005, 2021.
- Johnson EL, Laurence DW, Xu F, Crisp CE, Mir A, Burkhart HM, Lee C-H*, Hsu M-C*. Parameterization, geometric modeling, and isogeometric analysis of tricuspid valves. Computer Methods in Applied Mechanics and Engineering, 384:113960, 2021.
- Xu F, Johnson EL, Wang C, Jafari A, Yang CH, Sacks MS, Krishnamurthy A, Hsu M-C*. Computational investigation of left ventricular hemodynamics following bioprosthetic aortic and mitral valve replacement. Mechanics Research Communications, 112:103604, 2021.
- Saurabh K, Gao B, Fernando M, Xu S, Khanwale MA, Khara B, Hsu M-C, Krishnamurthy A, Sundar H, Ganapathysubramanian B*. Industrial scale Large Eddy Simulations with adaptive octree meshes using immersogeometric analysis. Computers & Mathematics with Applications, 97:28–44, 2021.
- Codoni D, Moutsanidis G, Hsu M-C, Bazilevs Y, Johansen C, Korobenko A*. Stabilized methods for high-speed compressible flows: toward hypersonic simulations. Computational Mechanics, 67:785–809, 2021.
- Ross CJ, Hsu M-C, Baumwart R, Mir A, Burkhart HM, Holzapfel GA, Wu Y, Lee C-H*. Quantification of load-dependent changes in the collagen fiber architecture for the strut chordae tendineae-leaflet insertion of porcine atrioventricular heart valves. Biomechanics and Modeling in Mechanobiology, 20:223–241, 2021.
- Xu S, Gao B, Lofquist A, Fernando M, Hsu M-C, Sundar H*, Ganapathysubramanian B*. An octree-based immersogeometric approach for modeling inertial migration of particles in channels. Computers & Fluids, 214:104764, 2021.
2020
- Johnson EL, Wu MCH, Xu F, Wiese NM, Rajanna MR, Herrema AJ, Ganapathysubramanian B, Hughes TJR*, Sacks MS*, Hsu M-C*. Thinner biological tissues induce leaflet flutter in aortic heart valve replacements. Proceedings of the National Academy of Sciences, 117:19007–19016, 2020.
- Kozak N, Rajanna MR, Wu MCH, Murugan M, Bravo L, Ghoshal A, Hsu M-C, Bazilevs Y*. Optimizing gas turbine performance using the surrogate management framework and high-fidelity flow modeling. Energies, 13:4283, 2020.
- Johnson EL*, Hsu M-C. Isogeometric analysis of ice accretion on wind turbine blades. Computational Mechanics, 66:311–322, 2020.
- Laurence DW, Johnson EL, Hsu M-C, Baumwart R, Mir A, Burkhart HM, Holzapfel GA, Wu Y, Lee C-H*. A pilot in silico modeling-based study of the pathological effects on the biomechanical function of tricuspid valves. International Journal for Numerical Methods in Biomedical Engineering, 36:e3346, 2020.
- Kozak N, Xu F, Rajanna MR, Bravo L, Murugan M, Ghoshal A, Bazilevs Y, Hsu M-C*. High-fidelity finite element modeling and analysis of adaptive gas turbine stator–rotor flow interaction at off-design conditions. Journal of Mechanics, 36:595–606, 2020.
- Bazilevs Y*, Takizawa K, Tezduyar TE, Hsu M-C, Otoguro Y, Mochizuki H, Wu MCH. Wind turbine and turbomachinery computational analysis with the ALE and Space–Time variational multiscale methods and isogeometric discretization. Journal of Advanced Engineering and Computation, 4:1–32, 2020.
- Ross CJ, Laurence DW, Hsu M-C, Baumwart R, Zhao YD, Mir A, Burkhart HM, Holzapfel GA, Wu Y,
Lee C-H*. Mechanics of porcine heart valves’ strut chordae tendineae investigated as a leaflet–chordae–papillary muscle entity. Annals of Biomedical Engineering, 48:1463–1474, 2020. - Terahara T, Takizawa K*, Tezduyar TE, Bazilevs Y, Hsu M-C. Heart valve isogeometric sequentially-coupled FSI analysis with the space–time topology change method. Computational Mechanics, 65:1167–1187, 2020.
- Zhu Q, Xu F, Xu S, Hsu M-C, Yan J*. An immersogeometric formulation for free-surface flows with application to marine engineering problems. Computer Methods in Applied Mechanics and Engineering, 361:112748, 2020.
2019
- Balu A, Nallagonda S, Xu F, Krishnamurthy A*, Hsu M-C, Sarkar S. A deep learning framework for design and analysis of surgical bioprosthetic heart valves. Scientific Reports, 9:18560, 2019.
- Wu MCH, Muchowski HM, Johnson EL, Rajanna MR, Hsu M-C*. Immersogeometric fluid–structure interaction modeling and simulation of transcatheter aortic valve replacement. Computer Methods in Applied Mechanics and Engineering, 357:112556, 2019.
- Xu F*, Bazilevs Y, Hsu M-C. Immersogeometric analysis of compressible flows with application to aerodynamic simulation of rotorcraft. Mathematical Models and Methods in Applied Sciences, 29:905–938, 2019.
- Xu S, Xu F, Kommajosula A, Hsu M-C, Ganapathysubramanian B*. Immersogeometric analysis of moving objects in incompressible flows. Computers & Fluids, 89:24–33, 2019.
- Xu S, Gao B, Hsu M-C, Ganapathysubramanian B*. A residual-based variational multiscale method with weak imposition of boundary conditions for buoyancy-driven flows. Computer Methods in Applied Mechanics and Engineering, 352:345–368, 2019.
- Herrema AJ*, Kiendl J, Hsu M-C. A framework for isogeometric-analysis-based design and optimization of wind turbine blade structures. Wind Energy, 22:153–170, 2019.
- Herrema AJ, Johnson EL, Proserpio D, Wu MCH, Kiendl J, Hsu M-C*. Penalty coupling of non-matching isogeometric Kirchhoff–Love shell patches with application to composite wind turbine blades. Computer Methods in Applied Mechanics and Engineering, 346:810–840, 2019. (A.J.H., E.L.J., and D.P. contributed equally to this work.)
- Takizawa K*, Bazilevs Y, Tezduyar TE, Hsu M-C. Computational cardiovascular flow analysis with the variational multiscale methods. Journal of Advanced Engineering and Computation, 3:366–405, 2019.
- Lee C-H*, Laurence DW, Ross CJ, Kramer KE, Babu AR, Johnson EL, Hsu M-C*, Aggarwal A, Mir A, Burkhart HM, Towner RA, Baumwart R, Wu Y. Mechanics of the tricuspid valve—from clinical diagnosis/treatment, in vivo and in vitro investigations, to patient-specific biomechanical modeling. Bioengineering, 6:47, 2019.
2018
- Yu Y*, Kamensky D, Hsu M-C, Lu XY, Bazilevs Y, Hughes TJR. Error estimates for projection-based dynamic augmented Lagrangian boundary condition enforcement, with application to fluid–structure interaction. Mathematical Models and Methods in Applied Sciences, 28:2457–2509, 2018.
- Wu MCH, Zakerzadeh R, Kamensky D, Kiendl J, Sacks MS, Hsu M-C*. An anisotropic constitutive model for immersogeometric fluid–structure interaction analysis of bioprosthetic heart valves. Journal of Biomechanics, 74:23–31, 2018.
- Xu F, Morganti S, Zakerzadeh R, Kamensky D, Auricchio F, Reali A, Hughes TJR, Sacks MS, Hsu M-C*. A framework for designing patient-specific bioprosthetic heart valves using immersogeometric fluid–structure interaction analysis. International Journal for Numerical Methods in Biomedical Engineering, 34:e2938, 2018.
- Kamensky D*, Xu F, Lee C-H, Yan J, Bazilevs Y, Hsu M-C. A contact formulation based on a volumetric potential: Application to isogeometric simulations of atrioventricular valves. Computer Methods in Applied Mechanics and Engineering, 330:522–546, 2018.
2017
- Zakerzadeh R, Hsu M-C, Sacks MS*. Computational methods for the aortic heart valve and its replacements. Expert Review of Medical Devices, 14:849–866, 2017.
- Kamensky D*, Evans JA, Hsu M-C, Bazilevs Y. Projection-based stabilization of interface Lagrange multipliers in immersogeometric fluid–thin structure interaction analysis, with application to heart valve modeling. Computers & Mathematics with Applications, 74:2068–2088, 2017.
- Xu F, Moutsanidis G, Kamensky D, Hsu M-C, Murugan M, Ghoshal A, Bazilevs Y*. Compressible flows on moving domains: Stabilized methods, weakly enforced essential boundary conditions, sliding interfaces, and application to gas-turbine modeling. Computers & Fluids, 158:201–220, 2017.
- Murugan M*, Ghoshal A, Xu F, Hsu M-C, Bazilevs Y, Bravo L, Kerner K. Analytical study of articulating turbine rotor blade concept for improved off-design performance of gas turbine engines. Journal of Engineering for Gas Turbines and Power, 139:102601–102601-6, 2017.
- Wang C, Xu F, Hsu M-C, Krishnamurthy A*. Rapid B-rep model preprocessing for immersogeometric analysis using analytic surfaces. Computer Aided Geometric Design, 52–53:190–204, 2017.
- Benzaken J, Herrema AJ, Hsu M-C, Evans JA*. A rapid and efficient isogeometric design space exploration framework with application to structural mechanics. Computer Methods in Applied Mechanics and Engineering, 316:1215–1256, 2017.
- Herrema AJ, Wiese NM, Darling CN, Ganapathysubramanian B, Krishnamurthy A, Hsu M-C*. A framework for parametric design optimization using isogeometric analysis. Computer Methods in Applied Mechanics and Engineering, 316:944–965, 2017.
- Wu MCH, Kamensky D, Wang C, Herrema AJ, Xu F, Pigazzini MS, Verma A, Marsden AL, Bazilevs Y, Hsu M-C*. Optimizing fluid–structure interaction systems with immersogeometric analysis and surrogate modeling: application to a hydraulic arresting gear. Computer Methods in Applied Mechanics and Engineering, 316:668–693, 2017.
- Kamensky D*, Hsu M-C, Yu Y, Evans JA, Sacks MS, Hughes TJR. Immersogeometric cardiovascular fluid–structure interaction analysis with divergence-conforming B-splines. Computer Methods in Applied Mechanics and Engineering, 314:408–472, 2017.
- Wang C, Wu MCH, Xu F, Hsu M-C, Bazilevs Y*. Modeling of a hydraulic arresting gear using fluid–structure interaction and isogeometric analysis. Computers & Fluids, 142:3–14, 2017.
2016
- Schillinger D*, Harari I, Hsu M-C, Kamensky D, Stoter SKF, Yu Y, Zhao Y. The non-symmetric Nitsche method for the parameter-free imposition of weak boundary and coupling conditions in immersed finite elements. Computer Methods in Applied Mechanics and Engineering, 309:625–652, 2016.
- Hsu M-C*, Wang C, Xu F, Herrema AJ, Krishnamurthy A. Direct immersogeometric fluid flow analysis using B-rep CAD models. Computer Aided Geometric Design, 43:143–158, 2016.
- Xu F, Schillinger D, Kamensky D, Varduhn V, Wang C, Hsu M-C*. The tetrahedral finite cell method for fluids: Immersogeometric analysis of turbulent flow around complex geometries. Computers & Fluids, 141:135–154, 2016.
- Varduhn V*, Hsu M-C, Ruess M, Schillinger D. The tetrahedral finite cell method: Higher-order immersogeometric analysis on adaptive non-boundary-fitted meshes. International Journal for Numerical Methods in Engineering, 107:1054–1079, 2016.
2015
- Kamensky D, Evans JA, Hsu M-C*. Stability and conservation properties of collocated constraints in immersogeometric fluid–thin structure interaction analysis. Communications in Computational Physics, 18:1147–1180, 2015.
- Hsu M-C*, Wang C, Herrema AJ, Schillinger D, Ghoshal A, Bazilevs Y. An interactive geometry modeling and parametric design platform for isogeometric analysis. Computers & Mathematics with Applications, 70:1481–1500, 2015.
- Hsu M-C*, Kamensky D, Xu F, Kiendl J, Wang C, Wu MCH, Mineroff J, Reali A, Bazilevs Y, Sacks MS. Dynamic and fluid–structure interaction simulations of bioprosthetic heart valves using parametric design with T-splines and Fung-type material models. Computational Mechanics, 55:1211–1225, 2015.
- Kiendl J*, Hsu M-C, Wu MCH, Reali A. Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering, 291:280–303, 2015.
- Schillinger D*, Evans JA, Frischmann F, Hiemstra RR, Hsu M-C, Hughes TJR. A Collocated C0 Finite Element Method: Reduced quadrature perspective, cost comparison with standard finite elements, and explicit structural dynamics. International Journal for Numerical Methods in Engineering, 102:576–631, 2015.
- Kamensky D, Hsu M-C*, Schillinger D, Evans JA, Aggarwal A, Bazilevs Y, Sacks MS, Hughes TJR. An immersogeometric variational framework for fluid–structure interaction: application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering, 284:1005–1053, 2015.
2014
- Hsu M-C*, Kamensky D, Bazilevs Y, Sacks MS, Hughes TJR. Fluid–structure interaction analysis of bioprosthetic heart valves: Significance of arterial wall deformation. Computational Mechanics, 54:1055–1071, 2014.
- Takizawa K*, Bazilevs Y, Tezduyar TE, Hsu M-C, Øiseth O, Mathisen KM, Kostov N, McIntyre S. Engineering analysis and design with ALE-VMS and Space–Time methods. Archives of Computational Methods in Engineering, 21:481–508, 2014.
- Bazilevs Y*, Takizawa K, Tezduyar TE, Hsu M-C, Kostov N, McIntyre S. Aerodynamic and FSI analysis of wind turbines with the ALE-VMS and ST-VMS Methods. Archives of Computational Methods in Engineering, 21:359–398, 2014.
- Hsu M-C, Akkerman I, Bazilevs Y*. Finite element simulation of wind turbine aerodynamics: Validation study using NREL Phase VI experiment. Wind Energy, 17:461–481, 2014.
2013
- Korobenko A, Hsu M-C, Akkerman I, Bazilevs Y*. Aerodynamic simulation of vertical-axis wind turbines. Journal of Applied Mechanics, 81:021011, 2013.
- Bazilevs Y*, Hsu M-C, Bement MT. Adjoint-based control of fluid–structure interaction for computational steering applications. Procedia Computer Science, 18:1989–1998, 2013.
- Korobenko A, Hsu M-C, Akkerman I, Tippmann J, Bazilevs Y*. Structural mechanics modeling and FSI simulation of wind turbines. Mathematical Models and Methods in Applied Sciences, 23:249–272, 2013.
- Benson DJ*, Hartmann S, Bazilevs Y, Hsu M-C, Hughes TJR. Blended isogeometric shells. Computer Methods in Applied Mechanics and Engineering, 255:133–146, 2013.
2012
- Hsu M-C, Bazilevs Y*. Fluid–structure interaction modeling of wind turbines: simulating the full machine. Computational Mechanics, 50:821–833, 2012.
- Bazilevs Y*, Hsu M-C, Takizawa K, Tezduyar TE. ALE–VMS and ST–VMS methods for computer modeling of wind-turbine rotor aerodynamics and fluid–structure interaction. Mathematical Models and Methods in Applied Sciences, 22:1230002, 2012.
- Bazilevs Y*, Hsu M-C, Scott MA. Isogeometric fluid–structure interaction analysis with emphasis on non-matching discretizations, and with application to wind turbines. Computer Methods in Applied Mechanics and Engineering, 249-252:28–41, 2012.
- Hsu M-C, Akkerman I, Bazilevs Y*. Wind turbine aerodynamics using ALE–VMS: Validation and the role of weakly enforced boundary conditions. Computational Mechanics, 50:499–511, 2012.
- Long CC, Hsu M-C, Bazilevs Y, Feinstein JA, Marsden AL*. Fluid–structure interaction simulations of the Fontan procedure using variable wall properties. International Journal for Numerical Methods in Biomedical Engineering, 28:512–527, 2012.
- Stein P, Hsu M-C, Bazilevs Y*, Beucke K. Operator- and template-based modeling of solid geometry for isogeometric analysis with application to vertical axis wind turbine simulation. Computer Methods in Applied Mechanics and Engineering, 213-216:71–83, 2012.
- Bazilevs Y*, Hsu M-C, Kiendl J, Benson DJ. A computational procedure for prebending of wind turbine blades. International Journal for Numerical Methods in Engineering, 89:323–336, 2012.
2011
- Takizawa K, Henicke B, Montes D, Tezduyar TE*, Hsu M-C, Bazilevs Y. Numerical-performance studies for the stabilized space-time computation of wind-turbine rotor aerodynamics. Computational Mechanics, 48:647–657, 2011.
- Takizawa K, Henicke B, Tezduyar TE*, Hsu M-C, Bazilevs Y. Stabilized space-time computation of wind-turbine rotor aerodynamics. Computational Mechanics, 48:333–344, 2011.
- De Luycker E*, Benson DJ, Belytschko T, Bazilevs Y, Hsu M-C. X-FEM in isogeometric analysis for linear fracture mechanics. International Journal for Numerical Methods in Engineering, 87:541–565, 2011.
- Hsu M-C*, Akkerman I, Bazilevs Y. High-performance computing of wind turbine aerodynamics using isogeometric analysis. Computers & Fluids, 49:93–100, 2011.
- Bazilevs Y*, Hsu M-C, Kiendl J, Wüchner R, Bletzinger K-U. 3D simulation of wind turbine rotors at full scale. Part II: Fluid–structure interaction modeling with composite blades. International Journal for Numerical Methods in Fluids, 65:236–253, 2011.
- Bazilevs Y*, Hsu M-C, Akkerman I, Wright S, Takizawa K, Henicke B, Spielman T, Tezduyar TE. 3D simulation of wind turbine rotors at full scale. Part I: Geometry modeling and aerodynamics. International Journal for Numerical Methods in Fluids, 65:207–235, 2011.
- Hsu M-C*, Bazilevs Y. Blood vessel tissue prestress modeling for vascular fluid–structure interaction simulation. Finite Elements in Analysis and Design, 47:593–599, 2011.
- Benson DJ*, Bazilevs Y, Hsu M-C, Hughes TJR. A large deformation, rotation-free, isogeometric shell. Computer Methods in Applied Mechanics and Engineering, 200:1367–1378, 2011.
2010
- Kiendl J*, Bazilevs Y, Hsu M-C, Bletzinger K-U, Wüchner R. The bending strip method for isogeometric analysis of Kirchhoff–Love shell structures comprised of multiple patches. Computer Methods in Applied Mechanics and Engineering, 199:2403–2416, 2010.
- Benson DJ*, Bazilevs Y, De Luycker E, Hsu M-C, Scott MA, Hughes TJR, Belytschko T. A generalized finite element formulation for arbitrary basis functions: From isogeometric analysis to XFEM. International Journal for Numerical Methods in Engineering, 83:765–785, 2010.
- Bazilevs Y*, Hsu M-C, Zhang Y, Wang W, Kvamsdal T, Hentschel S, Isaksen JG. Computational vascular fluid–structure interaction: Methodology and application to cerebral aneurysms. Biomechanics and Modeling in Mechanobiology, 9:481–498, 2010.
- Bazilevs Y*, Hsu M-C, Zhang Y, Wang W, Liang X, Kvamsdal T, Brekken R, Isaksen JG. A fully-coupled fluid–structure interaction simulation of cerebral aneurysms. Computational Mechanics, 46:3–16, 2010.
- Benson DJ*, Bazilevs Y, Hsu M-C, Hughes TJR. Isogeometric shell analysis: The Reissner–Mindlin shell. Computer Methods in Applied Mechanics and Engineering, 199:276–289, 2010.
- Hsu M-C*, Bazilevs Y, Calo VM, Tezduyar TE, Hughes TJR. Improving stability of multiscale formulations in flow simulations at small time steps. Computer Methods in Applied Mechanics and Engineering, 199:828–840, 2010.
2009
- Bazilevs Y*, Hsu M-C, Benson DJ, Sankaran S, Marsden AL. Computational fluid–structure interaction: Methods and application to a total cavopulmonary connection. Computational Mechanics, 45:77–89, 2009.
- Zhang Y*, Wang W, Liang X, Bazilevs Y, Hsu M-C, Kvamsdal T, Brekken R, Isaksen JG. High-fidelity tetrahedral mesh generation from medical imaging data for fluid–structure interaction analysis of cerebral aneurysms. Computer Modeling in Engineering & Sciences, 42:131–150, 2009.
- Sheu TWH*, Hsu M-C. Finite-element simulation of incompressible viscous flows in moving meshes. Numerical Heat Transfer, Part B: Fundamentals, 56:38–57, 2009.
Departments
Affiliations
Interests
AeroelasticityBiomechanicsComputational MechanicsFluid-Structure InteractionIsogeometric and Finite Element Analysis