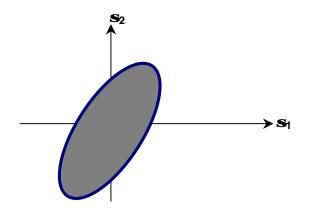
F j	DISTORTION ENERGY	١lz
<u> </u>		
	σ_{i} G_{i} G_{i	
	$\mathcal{U} = \frac{1}{2E} \left[\sigma_{1}^{2} + \sigma_{2}^{2} + \sigma_{3}^{2} - 2v \left(\sigma_{1} \sigma_{2} + \sigma_{2} \sigma_{3} + \sigma_{1} \sigma_{3} \right) \right]$	
	U=UhtUd = HNDROSTATIC + DISTORTION VOLUMETRIK CHANGE MEASURES AMOUNT OF SHEAR	
	$\sigma_1 = \sigma_h + \sigma_{1d}$	
	$\sigma_2 = \sigma_h + \sigma_2 d$ $\sigma_3 = \sigma_h + \sigma_3 d$	
	$\sigma_1 + \sigma_2 + \sigma_3 = 3\sigma_n + \sigma_{1d} + \sigma_{2d} + \sigma_{3d}$ $\sigma_h = \sigma_{1} + \sigma_{2} + \sigma_{3}$ $\sigma_h = \sigma_{1} + \sigma_{2} + \sigma_{3}$	
$\widehat{}$	$U_{h} = \frac{1}{2E} \left[\sigma_{h}^{2} + \sigma_{h}^{2} + \sigma_{h}^{2} - 2 \sqrt[3]{(\sigma_{h} \sigma_{h} + \sigma_{h} \sigma_{h} + \sigma_{h} \sigma_{h})} \right]$ $= 1 \left[3\sigma_{h}^{2} - 2 \sqrt[3]{(3\sigma_{h}^{2})} \right]$	
	$= \frac{1}{2E} \left[3\sigma_{h}^{2} - 2\sqrt{3\sigma_{h}^{2}} \right]$ $U_{h} = \frac{3}{2} \left(\frac{1-2\sqrt{3\sigma_{h}^{2}}}{E} \right) \sigma_{h}^{2}$	

Distortion Energy Theory:

The distortion energy theory says that failure occurs due to distortion of a part, not due to volumetric changes in the part (distortion causes shearing, but volumetric changes due not).

As examples:

Rocks below the earth's surface. Pressure exerted on them is essentially uniform and well beyond their compressive ultimate strengths, yet the rocks are able to withstand the pressure of the water without fracture. The explanation for their survival is that because the shape of the rock is not distorted, there is no shearing, therefore no failure.

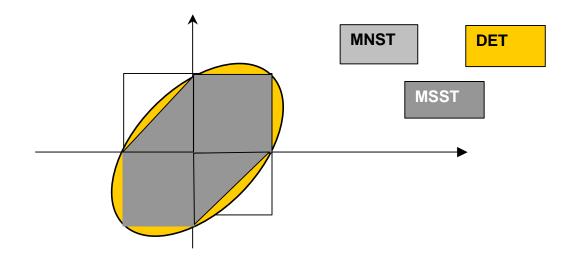

Failure will occur if

$$s' = \sqrt{s_1^2 + s_2^2 + s_3^2 - s_1 s_2 - s_2 s_3 - s_1 s_3} \ge S_y$$

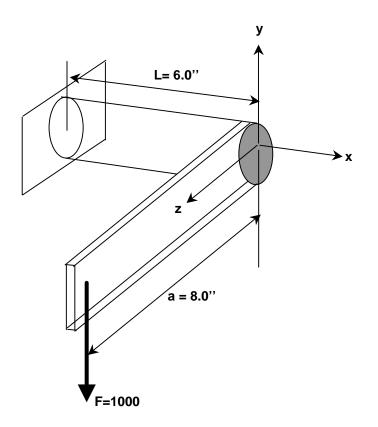
In terms of applied stresses

$$\mathbf{s}' = \sqrt{\frac{(\mathbf{s}_{x} - \mathbf{s}_{y})^{2} + (\mathbf{s}_{y} - \mathbf{s}_{z})^{2} + (\mathbf{s}_{z} - \mathbf{s}_{xy})^{2} + 6(\mathbf{t}_{xy}^{2} + \mathbf{t}_{yz}^{2} + \mathbf{t}_{zx}^{2})}{2}}$$

 σ is called the Von Mises effective stress.



For the case of pure shear, i.e., $\sigma_1=\tau=-\sigma_3$, $\sigma_2=0$


$$S_{y}^{2} = \mathbf{s}_{1}^{2} - \mathbf{s}_{1}\mathbf{s}_{3}^{2} + \mathbf{s}_{3}^{2} = 3\mathbf{s}_{1}^{2} = 3\mathbf{t}_{\max}^{2}$$
$$\mathbf{s}_{1} = \frac{S_{y}}{\sqrt{3}} = 0.577S_{y} = \mathbf{t}_{\max}$$

Shear yield strength, Ssy = 0.577 Sy

Distortion Energy Theory is less conservative than Maximum Shear Strength Theory, but more conservative than the Maximum Normal Stress Theory

Determine whether or failure is predicted with the Distortion Energy Theory for the shaft loaded as shown

DISTORTION ENERGY

 \sim

SPIRE SUBSECTS PLER SCURPE CONTRACTS PLER SCURPE CONTRACTS PRESS CONTRACTS PRESS CONTRACTS PRESS CONTRACTS PLER CONTRACTS PLER

Erand Stand

$$U_{h} = \frac{2}{2} \left(\frac{(-2\sqrt{3})}{6}\sigma_{h}^{2} - \frac{(-2\sqrt{3})}{3}\sigma_{h}^{2} - \frac{(-2\sqrt{3})}{3}\sigma_{h}^{2} + \frac{(-2\sqrt{3})}{3}\sigma_{h}^{2} - \frac{(-2\sqrt{3})}{3}\sigma_{h}^{2}$$

2/2