Tradeoffs in Probabilistic Packet Marking for IP Traceback.

Micah Adler*
Department of Computer Science
University of Massachusetts
Ambherst, MA 01003-4610.
Email: micah@cs.umass.edu

August 29, 2002

Abstract

There has been considerable recent interest in probabilistic packet marking schemes for the
problem of tracing a sequence of network packets back to an anonymous source. An important
consideration for such schemes is the number of packet header bits that need to be allocated
to the marking protocol. Let b denote this value. All previous schemes belong to a class of
protocols for which b must be at least logn, where n is the number of bits used to represent the
path of the packets. In this paper, we introduce a new marking technique for tracing a sequence
of packets sent along the same path. This new technique is effective even when b = 1. In other
words, the sequence of packets can be traced back to their source using only a single bit in the
packet header. With this scheme, the number of packets required to reconstruct the path is
O(22"), but we also show that Q(2") packets are required for any protocol where b = 1. We also
study the tradeoff between b and the number of packets required. We provide a protocol and
a lower bound that together demonstrate that for the optimal protocol, the number of packets
required (roughly) increases exponentially with n, but decreases doubly exponentially with b.
The protocol we introduce is simple enough to be useful in practice. We also study the case
where the packets are sent along k different paths. For this case, we demonstrate that any
protocol must use at least log(2k — 1) header bits. We also provide a protocol that requires
[log(2k + 1)] header bits in some restricted scenarios. This protocol introduces a new coding
technique that may be of independent interest.

1 Introduction

In recent years, the Internet has seen an alarming increase in what are known as denial-of-service
attacks. Such an attack consists of a malicious party sending enormous volumes of traffic to a remote
host or a network, thereby denying legitimate users access to this shared resource. Unfortunately,
such attacks are easy to perform, and in fact there are well known techniques for mounting attacks
against a single shared resource that are coordinated to occur simultaneously from a large number
of distributed hosts [5]. To make matters worse, in the current and foreseeable routing architectures
of the Internet, a host transmitting packets can use a forged source address for those packets. This

*This work supported in part by the National Science Foundation under NSF Faculty Early Career Development
Award CCR-0133664 and NSF Research Infrastructure Award ETA-0080119.

means that there is little or no accountability for the source of these attacks and the process of
halting an attack in progress is both slow and requires significant resources. Thus, one of the most
important tools needed to fight denial-of-service attacks is an automated technique for tracing a
stream of packets back to its source. This is known as the IP traceback problem.

A number of different approaches to the IP traceback problem have been suggested. In this paper,
we study one of the most promising, which is called probabilistic packet marking, or PPM. For
advantages of PPM over other techniques, see [4] and [16]. PPM was first suggested by Burch and
Cheswick in [4]. The first actual schemes for PPM were introduced by Savage, Wetherall, Karlin
and Anderson in [16], which proposes the following clever approach to the IP traceback problem:
some fixed number of bits in the packet header are allocated to IP traceback, and are used to
store an IP address and a hop count. Every router that forwards a packet, independently with
some probability p, writes its (unique) IP address to those bits, and sets the hop count to 0. With
probability 1 —p, the IP address is left unchanged, and the hop count is incremented. Consider the
scenario where an attacker is performing a denial-of-service attack on a wictim by sending a stream
of packets along a path of length ¢. If p = ©(1/¢), then after the victim has received O(¢log¥¢)
packets, with high probability this scheme provides the victim with the entire path back to the
attacker.

The elegant PPM scheme of [16] has produced a flurry of activity in the networking community.
Subsequent research efforts have focused on improving and further analyzing the [16] technique
[6, 12, 18] (see also [10] and [13]). One important concern in this literature is reducing the number
of header bits required for PPM. In [16], they further refine their scheme so that they require 16
header bits, and can reconstruct the entire path with high probability after a few thousand packets
have been received. This has subsequently been improved to 13, achieved by a scheme in [6], which
is the minimum required bits achieved prior to the work described in this paper.

There has also been significant effort to develop PPM techniques that are effective when the packets
travel to the victim of the attack along multiple paths [6, 18]. This is a concern both since the
attacker may send packets from a number of distributed sources simultaneously, and also since
packets from a single source may travel to the victim using a number of different paths.

Despite the number of papers in this area, a rigorous theoretical analysis of PPM has been lacking.
There has been no real understanding of how the number of header bits and the number of packets
required grow as the size of the underlying network increases. Also, there has been no understanding
of the interplay and inherent tradeoffs between the number of header bits used, the number of
paths of attack, and the number of packets required to reconstruct (with high probability) the path
or paths used by the attacker. In addition to the practical importance of PPM, it turns out that
developing a thorough understanding of these questions is an interesting and challenging theoretical
problem.

1.1 Summary of results

Let b be the number of header bits allocated to IP traceback, and let n be the length (in bits) of
the description used by a protocol of the path of attack. (The definition of n will be made precise
in Section 2.) In this paper, we consider two different scenarios for the IP traceback problem: the
important special case (studied in [12], [7], and [16]) where the attacker sends all of its packets
along the same path, and the more general case where there are multiple paths of attack.

For the case of a single path of attack, we introduce a new type of PPM technique that allows for
a significantly more efficient encoding of the path description than previous techniques. This new
technique is effective even when b = 1, which is obviously the minimum possible number of header
bits. In other words, even when only a single header bit is allocated to PPM, the new scheme is able
to reveal the entire path of attack to the victim. Unfortunately, this requires ©((2 + €)?") packets
to be received by the victim, for any constant € > 0, and thus is only appropriate for small values
of n. However, we also provide an information theoretic lower bound demonstrating that Q(2")
packets are necessary for any one-bit protocol where the victim is able to determine the correct
path with probability greater than 1/2.

The large number of packets required by one-bit protocols leads to the following question: how does
the number of packets decrease as b increases? In this paper we provide a good understanding of the
optimal tradeoff between these two quantities. We demonstrate that the optimal number of packets
that must be received for given values of n and b grows exponentially with n, but decreases doubly
exponentially with b. Specifically, we provide a protocol that requires only O(bn?2b(2 + €)**/ 2b)
packets, for any constant ¢ > 0, to reconstruct the path (with high probability), as well as an
information theoretic lower bound showing that Q(2°27/ 2b) packets are necessary for the victim to
be able to determine the correct path with probability greater than 1/2. The protocol that achieves
the upper bound is simple (although its analysis is not simple), and the communication model is
realistic, and thus we expect the protocols for the single path case to be quite effective in practice.

For the case of multiple paths of attack, we demonstrate that one-bit protocols are not possible.
In particular, let k represent the number of paths used by the attacker. We provide a lower bound
demonstrating that any correct protocol must use at least log(2k — 1) header bits, regardless of
the number of packets received by the victim. This lower bound reveals an inherent limitation of
all existing PPM protocols that has not been addressed previously. We also provide a protocol
demonstrating that, for a restricted class of attacker strategies, [log(2k + 1)] bits are sufficient
to uniquely specify the paths used by the attacker (with high probability). Although we do not
demonstrate an efficient decoding algorithm for this protocol, the encoding technique relies on a
novel use of Vandermonde matrices, looks promising in terms of leading to an upper bound for an
unrestricted adversary, and may also be of independent interest.

1.2 Previous Work

All previous techniques for PPM belong to a class of protocols for which it must be the case that
b > 1. In particular, all previous PPM protocols encode the path information in such a manner that
the victim only uses the information of what packets it receives, and it can ignore the information
of how many of each type of packet it receives. The description given above of the original PPM
scheme of [16] can easily be seen to belong to this class of protocols. For any protocol with this
property, if b < logn then there is some attacker path that can only be correctly identified with
probability less than 1/2, even if all packets travel along that path. To see this, note that there
are 22" different sets of packets that can be received. Since there are 2" possible n-bit strings, if
the victim must correctly identify every possible attacker path with probability at least 1/2; then
22" must be at least 2" /2. Assuming that n > 2, the fact that b must be an integer implies that
b > logn. Thus, logn is a lower bound on b for this class of protocols.

The full version of the protocol from [16] also incorporates subdividing the description of each hop,
and then, instead of sending the entire description, randomly choosing one of these subdivisions

to send, along with the index of the subdivision. This technique has been further analyzed in
[18] and [12]. An alternative probabilistic packet marking scheme is introduced by Dean, Franklin
and Stubblefield [6]. The scheme from [6] is based on algebraic coding techniques and is designed
to be robust to the scenario where an attack is occurring from multiple locations simultaneously.
The scheme of Song and Perrig [18] also deals with the case of multiple sources for an attack, and
provides techniques for determining the exact attacker (most other schemes determine a path that
contains the attacker). This scheme requires the victim of the attack to have a current map of all
upstream routers to all attackers, but [18] also describes how to maintain this kind of map.

Lee and Park [12] provide an analysis of probabilistic packet marking schemes that adhere to the
following paradigm: each router, with probability p, uses the marking bits to describe its hop in the
path of attack, and with probability 1 — p leaves the marking bits untouched. They demonstrate
that with such schemes, in the case of single source attacks, the attacker’s address can be localized
to 2-5 possible sources, but multiple source attacks can achieve great uncertainty, thereby reducing
the effectiveness of PPM techniques that follow this paradigm.

A number of other approaches to IP Traceback that are not based on PPM have also been suggested.
These include the schemes and analyses appearing in [3, 7, 4, 17, 13, 8, 10].

2 The Models

We use slightly different models for the protocols and for the lower bounds, where the lower bound
model is at least as powerful as the upper bound model. We first describe the model used for the
protocols. We assume that from the perspective of the victim, the routing topology of the network
consists of a tree rooted at the victim. Thus, any packet sent to the victim travels up this tree
until it reaches the victim. At the start of the attack, the attacker chooses a set of nodes of the
tree, and then for each packet, it determines which of these nodes sends that packet to the victim.
We first examine the case where the attacker only chooses a single path; additional details on the
model where there are multiple paths are provided in Section 5.

We first introduce the protocols by making a number of simplifying assumptions about the network.
We then demonstrate in Section 8 that our results can easily be extended to hold in scenarios where
these assumptions are relaxed. In particular, we start by assuming that the tree is a complete binary
tree of height n, with the victim forming an additional node connected to the root of the tree. We
also assume that when a packet is sent to a node, that node is able to distinguish which child of
the node the packet came from. Finally, we also assume that the victim has complete knowledge
of the topology of the routing tree. Again, we want to emphasize that Section 8 describes how
each of these assumptions can be removed. For example, our results apply to an arbitrary routing
topology that is unknown to either the victim or the intermediate nodes!.

The header of each packet contains b bits that are allocated to traceback information. No other
bits of the packet can be utilized for IP traceback, and thus we assume that each packet consists of
only these b bits. For each packet that is forwarded from the attacker to the victim, the attacker
sets the initial value of these bits, and then each of the intermediate nodes is allowed to alter them,
but no other communication occurs.

We also make the restriction that protocols do not require any state information at the intermediate

1We point out that under this assumption, the resulting value of n can be larger.

nodes. Due to the memoryless nature of Internet routing, the lack of state information is an
important requirement for PPM protocols: it is impractical for routers to store any information on
individual flows. All of our protocols have the property that for each node, the set of b bits that
the node forwards to its parent in the tree are only a function of the incoming b bits, which child
of that node the packet arrives from, and random bits (that are not remembered). The victim, on
the other hand, does have storage.

For a given placement of the attacker at a leaf of the tree, we shall refer to the node on the path
from the root to the attacker at distance ¢ from the victim as N; (where the victim is Np, and
the attacker is N,11). Since we are assuming a binary tree, we can represent the path as a binary
string B = B1Bs ... By, where B; = 0 if the path goes to the left child of N;, and B; = 1 otherwise.
Note that when determining the outgoing bits for any packet, node N; has access to one bit of the
string B: the bit B;. It does not require state information to use this bit when setting the header
bits of a packet it forwards, since every incoming packet reveals the value of this bit.

The objective is for the intermediate nodes to inform the victim of the string B. In the case
that the attacker chooses a leaf node, the string B uniquely identifies the identity of the attacker,
thereby solving the IP traceback problem. On the other hand, if the attacker chooses a node that
is not a leaf of the tree, it may be able to set the initial bits of the packets in such a manner that
it exactly simulates what would occur if one of the children of the chosen node were sending the
packets. In other words, the path would look like it extends beyond its actual source. Various
ways of dealing with this have been suggested, including using cryptographic techniques [18], or
topological knowledge [16]. For simplicity, we assume here that it is sufficient to determine a path
that contains the correct path from the victim to the attacker as a prefix. However, we also point
out that the cryptographic techniques of [18] can be used in conjunction with the schemes that
were introduce here.

For the lower bound, we assume a stronger model (i.e., a model where the problem is at least as
easy to solve as in the model for the protocols). For the lower bound model, we assume a system
consisting of only two parties, called the Victim and the Network. The Network has an n-bit string
to send to the Victim. No communication occurs from the Victim to the Network. The Network
is allowed to send b-bit packets to the Victim, but it is stateless: for each packet it sends, it has
no memory of the previous packets that it has sent. This lower bound model actually captures the
difficulty of sending information from a memoryless node using packets consisting of a bounded
number of bits. This seems like a fundamental problem, and may be of interest beyond the context
of the IP traceback problem.

It is easy to show that any protocol for the upper bound model can be simulated in the lower bound
model, and thus lower bounds for the lower bound model also apply to the upper bound model.
Furthermore, it seems likely that the lower bound model is strictly more powerful than the upper
bound model, since the lower bound model has the advantage that a single party knows the entire
n-bit string, instead of that string being distributed across n nodes. Also, in the upper bound
model, the protocol must deal with a malicious attacker that sets the bits of the initial packet the
n nodes receive.

3 Protocols for a Single Path of Attack

We now describe our protocols for the case where all packets are sent from the attacker to the
victim along the same path. We start by describing the protocol for the case where b = 1, and then
generalize this to larger values of b.

The idea behind our technique is to encode the sequence of n bits into the probability that the bit
received by the victim is a 1. To start with, let’s assume that the attacker always sets the initial
bit to 0. With such an assumption, we can ensure that the probability of the victim receiving
alisp=>71, BZ(%)z Once we have achieved this, it is simple to perform the decoding: the
victim collects enough packets to determine a sufficiently good estimate of the probability p, and
then simply reads off the bits from the binary decimal description of p. Note that the victim may
not get an exact estimate of p, but it is sufficient to obtain an estimate that is likely to have the
required precision.

To achieve such an encoding, a surprisingly simple protocol is sufficient for the nodes. Each node
N; has two bits to consider: Bj;, and the bit that it receives from N;,;. For each packet that it
receives, node N; flips a fair coin; on a head, it forwards B;, and on a tail it forwards the bit
that it receives from N;i;. To see that this achieves the claimed probability, let p; denote the
probability that node N; receives a 1. We see that if B; =0, then p; 1 = p;/2, and if B; = 1, then
pi—1 = pi/2 + 1/2. Thus, each of the n bits is shifted into the binary decimal description of p one
bit at a time, and thus py = p.

Unfortunately, if the attacker sets the initial bit to 1, then the probability of the victim receiving
alis1/2" + 370, Bz(%)z Thus, the attacker is able to make any two lexicographically adjacent
n-bit strings look identical. A sufficiently accurate estimate of the probability of the bit received
by the victim being a 1 does allow the victim to restrict the string B to one of two possibilities,
and in practice, this may in some cases be sufficient. However, there is also a simple way to ensure
that the victim can, with high probability, decode the n-bit string uniquely. In particular, we use
a protocol where each node N; forwards B; with probability 1/2, the bit that it receives from node
N1 with probability 1/2 — ¢, and 0 with probability €, for any constant 0 < e < 1/2.

We next describe the corresponding decoding process, as well as the proof of correctness. We point
out that there are simpler descriptions of both the decoding and the proof of correctness for our
single bit encoding scheme; we provide a more complicated version here in order to facilitate our
description of the case where b > 1. Consider the following decoding process:

DECODE(p,o,¢c1,...,c):
e If p>cy — o, then A1 =1, else 4; = 0.
e For i =2 to {:
— Letp'=p— Z;;ll cjA;j.
— Ifp’ > c;— o, then A; =1, else A; = 0.

e Return [A4y,..., Ay

Lemma 1 Consider any set of bits By ... By, and any protocol where the victim is able to determine
real numbers p, o, and cy ...cy, that satisfy the following conditions:

1. |p—2§:1 ¢;Bj| < o.
2. Foralli, 1<i<(l—1,¢>20+Y5 ;05

3. ¢cp > 20.

The process DECODE(p, o,c1,...,cp) returns bits Ay ... Ay such that Vi,1 <i<{, A; = B;.

Proof: We demonstrate that for any ¢, 1 < ¢ < £, if the process correctly returns A;...A4; 1
(or no bits in the case that ¢ = 1), then it can determine the correct value of A;. To do so, let
p=p-— Z;_:ll ¢jBj. If p' > ¢; — o, then it must be the case that B; = 1. On the other hand, if
p' < ¢; — o, it must be the case that B; = 0. Thus, the lemma follows from induction. [|

In order to determine the bits that are encoded by the single bit encoding scheme described above,
the victim uses the following decoding process, where r = 1/2 — ¢, and A is a parameter of the
protocol.

e Obtain F = $15Z/4) packets.

e2p2n

Let x be the number of 1s in this set of packets.

Let p=a/F —r"/2.

Let o0 =r"/2 + er™.

2 n—1

Return [A;,...,4,] = DECODE(p,o, %, L ey)

We call the combination of this encoding and decoding processes protocol Single-Bit.

Theorem 1 With probability 1 — A, protocol Single-Bit allows the victim to determine the correct
values of By ... By.

Proof: For t € {0, 1}, let p! be the probability that the bit received by node N; is a 1, given that
the attacker sets the initial bit to ¢.

Claim 1 For t € {0,1}, it holds that pfy =t -r" + 3", Bzg

Proof: We see that for i < n, if B; = 0, then p! ;| = rpl. If B; = 1, thenp! | = (l—e)p;?—i—%(l—pﬁ) =
rp! + 3. The claim now follows by induction.]

From this claim, we see by a Chernoff bound that Pr[|p — pd| > /2 + er"] < A. When |p — p§| <
r"™/2 + er™, condition 1 of Lemma 1 is satisfied. To see that condition 3 is always satisfied, note
that /24 er™ < r"~1/4 is equivalent to requiring that r(3 +€) < 1/4, which follows from the fact
that r = 1/2 — e. To see that condition 2 is also always satisfied, note that for all4, 1 <i </ —1,
c; — Zg-:i 11Ci > cp. Thus, by Lemma 1, the victim is able to determine the entire string with
probability 1 — A. [

Note that this algorithm requires a number of packets that is exponential in n. We show in Section
4 that for the case where b = 1, such a dependence is necessary. Since this makes the protocol

impractical for all but small values of n, we next explore how to efficiently take advantage of larger
values of b. In fact, we demonstrate that it is possible to obtain a doubly exponential in b decrease
in the number of packets required.

We use the following idea for a protocol. One of the header bits, which we refer to as the marking
bit, performs roughly the same function as the single bit in the one-bit protocol. The remaining
bits are used as a (b — 1)-bit counter. On receiving a packet, a node increments the (b — 1)-bit
counter mod 2°~1. If the resulting value of the counter is not 1, then the packet is forwarded with
the new value of the counter, and with the marking bit unchanged. If the resulting value of the
counter is 1, then the one-bit scheme is performed on the marking bit, and the packet is forwarded
with the counter set to 1, as well as the new value of the marking bit. In particular, node N;
forwards B; as the marking bit with probability 1/2, the marking bit that it received from node
N;11 as the marking bit with probability 1/2 — €, and 0 as the marking bit with probability e.

Since the victim sees the counter on each packet that arrives, it can consider a set of packets that
all have the same value of the counter when they are received. When considering the packets in this
set, instead of every node on the path contributing to the probability of the marking bit being set
to 1, only one node in every 2°~1 nodes contributes to this probability. In the protocol Single-Bit,
we must determine the probability of seeing a 1 with precision ©(1/2"), but with this new scheme,
the corresponding precision is now only ©(1/2"/ 2071). This is how we obtain a doubly exponential
decrease in packets as b increases: our single bit protocol is exponential in n, but we have decreased
the effective value of n by a factor that is exponential in b.

The scheme described thus far is not always sufficient to decode the entire n-bit string B, since to
do so, the victim must receive a large number of packets with every possible setting of the counter.
We demonstrate how to modify the protocol to ensure that this is the case, but we first note that if
the attacker sets all initial bits uniformly at random, then the protocol as described thus far would
allow the victim to determine all of B. For decoding, the victim simply partitions the packets by
counter setting, and then, for each counter setting performs the same decoding procedure as is used
for the one-bit scheme. Standard Chernoff bound techniques suffice to shown that if the attacker
receives O(b2b24”/ 2b) packets, then with high probability, all n bits can be be correctly decoded.

To deal with arbitrary settings of the initial bits, we modify the protocol slightly. In particular,
each node N; with probability p performs a reset: it ignores the incoming bits, forwards the counter
as a 1, with probability 1/2 forwards the marking bit as B;, and with probability 1/2 forwards the
marking bit as 0. This has the effect of performing the marking procedure as if the received marking
bit was a 0.

We next describe the corresponding decoding procedure. We start by developing an expression for
the probability that the marking bit arrives at the victim set to 1. Let d = 2°~!. Let vp be the
probability that a packet P is reset by some node on the path and P arrives at the victim with the
counter set to k. Let z(n, k) = 1—1—{%;“, let k(k) = (k—1 mod d)+1, and let n(j, k) = (j—1)d+x(k).
Note that z(n, k) is the number of integers i, 1 < i < n, such that i mod d = k, and n(j, k) is the
Jth largest integer 7 such that ¢ mod d = k. We see that v}, = Zj(:nl’k) p(l— p)"(j*k)*l. Also, let a;?
be the probability that a packet that arrives at the victim is reset last by some node with distance
at least n(j, k) from the victim, given that it is actually reset, and that it arrives at the victim with

the counter set to k. We see that af = ﬁ ng;k) p(1 — p)nttk) =1,

For a packet P, let I’ be the value of the counter when it it received by the victim. Let Py be
the set of packets P such that I§ = k. For 0 < k <d —1, let gr be the fraction of packets in P

such that no node between the victim and the attacker performs a reset on the packet. Note that
qy is not a value readily available to the victim; an important portion of the decoding algorithm
is computing for each k a value ¢} that serves as an estimate for ¢;. Consider a packet chosen
uniformly at random from the set of packets in P for which the attacker sets the marking bit to ¢,
for t € {0,1}. The probability that the packet has the marking bit set to 1 when it arrives at Ny

18
z(n,k i
(n,k) ri 1

pp =t qgr*™H + 3" B (ar + (1 — qf)ak)——
j=1

Thus, if we knew exactly the values ¢}, the decoding process would not be very different from the
single bit protocol. However, without at least a fairly accurate estimate for ¢, such a decoding
process would not be able to determine the string B uniquely. We next describe a decoding
algorithm that computes such an estimate. We here describe this algorithm for the case where the
value of n is known. However, the same process applies for any value of £ < n determined by the
victim: the victim can decode any prefix of the path up to the attacker. We here also describe the
easier case of the decoding process where p < %

The multibit decoding algorithm works as follows:

2
Ny waits until it has received F' = ((pff;:;dJ) (%) ln(4d/A)> packets.

For 0 <k <d-1,j€{0,1}, let f,g be the total number of packets in Py for which the value
of the marking bit received at Ny is j.

1+ 0__ n. g
Let g = Lt f£k+fl,ék

For k=0tod—1:

— For j =1 to z(n, k),
. . j—1
x Let c;? = (q,? +(1- q,?)a;?) TJT

_ _ z(n,k)
— Let of, = (q,’; +(1- qg)a’;(n’k)) .
1 ~nnz(n,k)
— Let pg, = f,i{tf,i’ _ qk’"2

— Let [A},..., AL,)] = DECODE(pi, o, cf, ..., e, 1))-
For j =1 to z(n, k),

* Let An(j,k) = A;

e Return [A44,..., 4]

We call the resulting combination of the encoding algorithm at the nodes and the decoding algorithm
at the victim the protocol Multi-bit. Note that in the case that p = ©(1/n), the number of packets

required by Multi-bit is O (Tzi'/‘; In(2°/ A)) Also note that protocol Multi-bit is reasonably
efficient in terms of memory requirements at the victim: O(dlog F') bits of memory are sufficient.
Finally, note that the interesting case of the algorithm is when 2 < b < [logn], since Single-Bit
handles the case when b =1, and when b > [log n], then techniques such as those used in [16] are

sufficient.

Theorem 2 If2 < b < [logn]| and A < 1/8, then with probability at least 1 — A, protocol Multi-
bit allows the victim to determine the correct values of B;, Vi, 1 <1 < n.

Proof: We here show that each of the d decoding processes produces the correct answer with
probability at least 1 — A/d, from which the theorem follows directly from a union bound. For
each call to the decode process, we demonstrate that the conditions of Lemma 1 are satisfied. For
condition 2, we must show that for 1 < j < z(n,k) — 1, c;? > 20y + Zjﬁ;ﬂ cF. Note that since
the expression (g + (1 — (ﬂc’)af) is monotonically nonincreasing as j increases, and r < 1/2, we see
that c;? - ng;f)l k> r#R)=1/9 " Since @@ + (1 — cj,':)a’z“(n,k) < 1, we have that oy, < r#("k)=1/4
implying condition 2. Also note that condition 1, i.e., that c’;(n k) > 20y, follows directly from the
definitions of c’;(n k) and oy, and the fact that r < 1/2.

Thus, we only have left to prove that condition 1 holds with probability at least 1 — A/d, or that

|- z(n,k) -|
Pr |-pk - Z C_I;B(j—l)d—l—k < UkJ >1—-A/d.
j=1

If it were the case that our estimates of ¢} were exact, and the fraction of packets for which the
marking bit is 1 at Ny were exactly the expectation, then condition 1 would follow easily. Of
course, the probability of these random variables being exactly their expectation is too small for
our purposes, but we can demonstrate that, with sufficiently high probability, they do not deviate
far from their expectation.

To do so, we use two versions of the Chernoff bound [11]. In particular, if X; ... X; are i.i.d. random
variables, such that Pr[X; = 1] = p, and Pr[X; = 0] = 1 — p, then for any ¢ such that 0 < § <1,

- i
Pr|Y X > (1+d)tp| <e ¥/

Li=1 i

and

Mt
Pr ZXi <(1-d)tp| < e /2,

Li=1 i

We first use these bounds to demonstrate that it is likely that Py is large enough to provide good
estimates on the quantities of interest. In particular, we show the following;:

2
Claim 2 Let u = (48¢”) In(4d/A). It holds that Pr [f + f} < u] < &.

prz (n,k)

Proof: Regardless of what the attacker does, for any packet P, Pr[If = k] > vg. Thus, we can
define a set of i.i.d. indicator variables X ... Xp such that X; = 1 if packet j is in P;. We see
that f2 + fi = Zle X, and Pr[X; = 1] > v}. Since the probability that f) + f} is too small is
maximized when Pr[X; = 1] = v}}, we can assume that this is the case. From the definition of v},

we see that v > @, which by the assumption that b < [logn]| implies that v} > 5&. The
claim now follows from the second Chernoff bound above, using § = %]

We next demonstrate that our estimate of q; is quite accurate:

10

Claim 3 Given that f0 + fi > p, it holds that Pr [| —qz| > %:;)} < 4%.

Proof: Let v} be the actual fraction of the F' packets P which are reset by some node and Ir =k

1 0_sn. g .F—pn.
Since ¢ = Ikif{kJr—;f)k—F, we see that |q} — ¢}| = %%—F If we do not condition on f + fi > u,
k k
then the fact that Pr [[of - F — of - F| > 255 0p] < & follows from the Chernoff bounds above

and the fact that v} > £%. If we then condltlon on f,% + f,? > p, by Claim 2, this increases
Pr(|og - F —of - F| > 250

24e2
pri k) R F (k)
e p = 1282

U,ZLF] to at most ;. Thus, with probability at most ; d’ Ty — ap] >

, where the second 1nequahty again uses the fact that v} > £2%. [|

We next demonstrate what the implications of this are on our algorithm:

Claim 4

z(n,k)

pR— Y. B vyark| < lap — ail - (a8 — ge)r* ™Y
=1

Proof: Since af <1,
|

k k) | = i1 _
0= U By nase| < ST I3 -kl T < g —ap |- (1 —gpl)re P,

rz(n,k)

Claim 5 Given that f{ + fi > p, Pr|[|pr — ph| > ‘Izk z(n.k) + (|lag — a¢)r #(n.k) +p12e2 }<%

Proof: We here bound the probability that pg is too large; the bound on the probability that py is

too small is similar. It is easy to see that Pr [pk —pd > %rz("’k)—i- (|@¢ — qp|)r(mk) 4 pﬁ(nzk)] is
maximized when the attacker sets all initial values of the marking bit to 1, and thus we assume that

.. . 1 qrr Z(" k) n z(n k) anz(n k)
the attacker does so. Note that thls implies that E[pg] = p;, — £ =pd+qir e
Py + %rz(”k + (lag — @¢l)r 2(nk) We now let X;, for 1 < j < tk, be a random variable, where

X; = 1 if the jth packet in Pk arrives to No with the marking bit set to 1 and X; = 0 otherwise,

where #, = f} + f2. We shall bound the probability that Y% | X; > tx(p} + ”f;;’”)).

Unfortunately, we can not use a Chernoff bound on this sum directly, since conditioning on f,? + f,% >
p can result in a small amount of dependence between the Xj;s. To remove this dependence, we
partition the integers from 1 to t; into two sets, where j € Sy if packet j arrives without being
reset, and j € S; otherwise. The variables X; for j € Sy are independent, as are the variables

X; for j € S1. Let sp = Pr[X; = 1] for j € Sp. We see that sg = r* a(nk) 4 Zz Bk+()d’"jz_l.

Likewise, let sy = Pr[X; = 1] for j € S;. We see that s; = Z 2(n,)Bk+()da;“ ’“’;1
We show that for w € {0,1}, Pr{ jeSw Xj > |Swlswt tk ;inzk)} < A/16d. Since |Sy| = gty and

rz(n,k)

S1] = (1 — q}")ty, this implies that Pr [VXG> t(ph 4 Lo)] < A/8d, from which the claim
follows. By the first Chernoff bound above

2
2(n.k) _(trer ™) N7 1su s
P <e 24e2[Sy |sw 3

> Xj > |Sulsw i | <

JESw

11

This probability is maximized by making |Sy|s, as large as possible, but it must be the case
that |Sy|sw < tx. Thus, we may consider only the case where |Sy|s,, = t;. Now, since we are
conditioning t; > p, and we have that b > 2 and A < 1/8, we see that

_(tgpr* (k))2 |Sw 5w
2actlsulsw) 2 < A/16d.

Now note that Claims 2, 3, 4, and 5 together give us that

z(n,k) -n..z(n,k) z(n,k)
gpr=™tpretm
Pr|lpp— > FBG_nyasn| > E 5t e | <3A/4d.
j=1

Thus, we only have left to show that

a vk) Z(nvk) Z(nvk)
Grs ™ pr " kT
2 6 < (Qk +01- qk)az(n,k)) 5
or that 32 < (1 — qg)a’;(n,k). We have that
oo p(L—p)"t
z\n, - ,k)
DA
and so using the assumption that p < 1/n, we see that a’;(n k) > m Thus, we only need to
show that 1 — g > %. By the definition of g%, this is equivalent to f} + f2 < Z(;’—i)p ~op - FL
Since v > M, we only need that fi + f < 3F. This follows simply from the fact that at
worst, all the packets are in the set Pj. [|

4 Lower bound for a single path of attack

Recall that the lower bound model requires the memoryless Network to send an n-bit string to
the Victim using b-bit packets. For any protocol P, let £(P) be the expected number of packets
received by the Victim when the input is chosen uniformly at random from the set of all 2™ possible
inputs. Let w(P) be the probability that using P, the Victim does not return the input string
given to the Network when that input is chosen uniformly at random from the set of all 2" possible
n-bit strings.

Theorem 3 For any protocol P, if E(P) < 22—;12"/217 — 2072 then w(P) > 1/2.

Proof: Any algorithm employed by the Victim can be thought of as a (possibly randomized)
procedure for deciding, for each possible sequence of packets that the Victim has received, whether
or not to continue receiving packets, and if the Victim decides to not continue, then the procedure
must specify a probability distribution over possible results for the Victim to output. We refer to
such an algorithm as a gemeral protocol. A restricted class of protocols is Monte Carlo protocols,
where the Victim waits until it has received exactly T packets, where T" depends only on n and b.
The protocol maps the set of T' received packets to a distribution over possible results, which the
Victim uses to produce an output.

12

Lemma 2 For any general protocol P, there is a Monte Carlo protocol P', such that E(P') =
4E(P), and w(P') < w(P) +1/4.

Proof: We define P’ as follows: collect T = 4€(P) packets. Using the order that the packets arrive
at the Victim, simulate the protocol P. If P produces a result before it receives T' packets, then P’
produces the same result, ignoring the remainder of the packets that it has. If P has not produced
a result after receiving T packets, then P’ outputs a result chosen uniformly at random from the set
of all 2" possible outputs. The bound on w(P’) follows from the fact that by Markov’s inequality,
the probability that P has not produced a result after receiving T' packets is at most 1/4. [|

Thus, we henceforth only consider Monte Carlo protocols. We shall demonstrate that for any such
protocol, if the number of packets received is too small, then the probability that the protocol
makes a mistake is at least 3/4. This implies the theorem.

The input to the Victim can be described via a receipt sequence: a sequence (ry,...,rr), where r;
is a b-bit string describing the ith b-bit packet that is received by the Victim. Any Monte Carlo
protocol for the Victim is a function that maps a receipt sequence to a probability distribution
over n-bit strings. Another kind of description of the input to the Victim is a receipt profile: a
2b_tuple R = (fo,..., fov_1), where f; is the number of packets of type i received by the Victim.

Note that Z?b:f)l fj = T. For any receipt profile R, let S(R) be the set of receipt sequences S
such that for all i, 0 < i < 2% — 1, the number of packets of type i in the sequence S is exactly
fi- Let a permutation oblivious algorithm for the Victim be a function that maps a receipt profile
to a probability distribution over n-bit strings. Intuitively, a permutation oblivious algorithm is a
Monte Carlo algorithm that ignores the permutation information of the input, and only uses the

receipt profile of the input.

Lemma 3 For any Monte Carlo algorithm P' for the Victim, there is a permutation oblivious

algorithm P" for the Victim, such that E(P") = E(P'), and w(P") = w(P’).

Proof: Given a Monte Carlo algorithm P’ for the Victim, we define P” as follows: on an input
receipt profile R, choose a receipt sequence S from S(R) uniformly at random. The probability
distribution over n-bit strings returned by P” is the same as P’ would return when the input is S.
To see that w(P") = w(P’'), note that since the Network is memoryless, on any n-bit string that is
input to the Network, and for any receipt profile R, the probability that the receipt sequence is any
receipt sequence in S(R) is the same for all receipt sequences in S(R). Thus, it does not matter
whether the Network “chooses” a receipt sequence uniformly at random from the set of receipt
sequences in the receipt profile, or whether the Victim makes this same choice. [|

Thus, we can simply show a lower bound for permutation oblivious algorithms, and this will imply
a lower bound for all possible algorithms. Let t(7T) be the set of all possible receipt profiles for
which the total number of packets received is exactly T. Let ¢(n) be the set of all 2" inputs of
length n that can be given to the Network. For any 7 € ¢(T) and I € «(n), let p(r,I) be the
probability that the Victim outputs I when the receipt profile is 7. Note that for any input I,
the probability that the Victim outputs I, given that the Network receives the input I, is at most
> rew(r) P(T, I). Thus, for any permutation oblivious algorithm P”,

ZIEL (1 - ZTEdI(T)p(T’ I))

"
>
w(P") > -

13

Now, note that

>, p(rI) < (D).

TeY(T);I€u(n)

This implies that w(P") > 1 — % Thus, if [(T)| < 2"/4, the permutation oblivious protocol
must make a mistake with probability at least 3/4. Thus, we only need to compute |¢)(T)| for a
given value of b. By a standard combinatorial argument, the number of receipt profiles in ¥ (7T') is

simply
b b 2’1
T+2°-1 < (T+2°—1)e
21)= 20— 1 '

2b
Thus, w(P") > 3/4, provided that (%) < 2"/4; or that T' < 21)2—;12"/2b — 2. By Lemmas 2

and 3, this implies that for any general protocol P, p(P) > 1/2, provided that £(P) < 2;—;12"/ 2 _
262, n

We also point out that a slightly tighter analysis using the same techniques gives us that when
b = 1, the lower bound is ©(2"). Furthermore, as was mentioned in Section 3, the protocol for
the case where the attacker sets the initial bits randomly gives us an upper bound of O(b2b24"/ 2b).
Since such an attacker can be simulated in the lower bound model, this is also an upper bound for
the lower bound model. Asymptotically, this differs from our lower bound by only a factor of 4 in
the exponent, and a factor of b.

5 Multiple paths of attack: models and intuition.

We next consider the case where the packets sent to the victim during an attack travel on multiple
paths. For protocols, we assume the same model as in the single path of attack case (i.e., complete
binary tree of height n and every node sees which child it receives any given packet from.) In
addition, there is a parameter k that indicates how many simultaneous paths of attack a protocol
must be able to handle. We assume that at the start of the attack, the attacker chooses some number
of active nodes out of the set of all possible nodes. Then, for each packet it sends, it chooses which
of the active nodes sends that packet to the victim. A protocol should work correctly as long as
the attacker chooses k or less active nodes, but can have any behavior in the case that the attacker
uses more nodes.

We also introduce a second parameter a. To see why, notice that if the attacker sends all but one
of its packets along one path, for reasonable values of b it is not possible for the victim to determine
the path used by the single packet that takes a different path. The parameter a represents the
relative bias in the number of packets that must be sent along a path in order for the victim to
recover that path. In particular, we say that a protocol is a-sensitive, if during any given attack,
the victim is able to reconstruct (with sufficiently high probability) all paths P, such that at least a
fraction of ¢ of the packets the attacker sends travel along P. Note that protocols where a > 1 are
not of interest to us, since the attacker could choose to send an equal number of packets along each
of k paths, in which case an a-sensitive protocol with o > 1 would not be guaranteed to return any
path information.

We here also make the assumption that the attacker sends each packet with the initial b bits
set to 0. The lower bounds we prove also hold without this restriction, since the attacker can

14

always choose to do this. This assumption does restrict the applicability of the protocol that we
introduce. However, we consider protocols in this model an important step towards a full solution.
Furthermore, the technique we use for this model looks promising in terms of a general solution,
and may also be of independent interest.

For the lower bounds, we assume the same model as the lower bounds for the single path of attack
case, except that the Network now has k strings to send to the Victim, but it only has access to
one of these strings for each packet that it sends to the Victim. Each time the Network sends a
packet, a third party, called the Attacker, is allowed to choose which of the k strings the Network
sees. Since the Network has no memory, it can only use the current string in determining the
contents of each b-bit packet. We shall refer to each of the n-bit strings of the Victim as a path to
be determined. Any protocol for our upper bound model provides a protocol for our lower bound
model as well, and thus lower bounds for the lower bound model also provide lower bounds for the
upper bound model.

We demonstrate in the lower bound model that if b < log(2k — 2), then the attacker is information
theoretically able to hide its location in the network. Specifically, regardless of the number of
packets received by the victim, the victim is not able to determine even a single path P such that
the probability that P is an actual path of attack is greater than 1/2. On the other hand, we
demonstrate in the upper bound model that if b > [log(2k + 1)], then there is a protocol such that
for any a and A < 1, with probability at least 1 — A, the packets received by the victim encode all
paths used to send a fraction of at least 7 of the packets.

To gain some intuition as to why b must grow as k grows, we first describe why single bit protocols
are not possible for & > 1. In particular, we show in our lower bound model that when b= 1, k > 2
and n > 2, the Victim is not able to determine any path with probability greater than 1/2.

For each path to be determined P, let p;(P) be the probability that when the Network has P, the
single bit sent to the Victim is a 1. Consider P;, P» and Ps, three out of the 2" possible paths to
be determined. In any valid protocol, no two of p1 (P), p1(FP2) and p1(P3) can be the same. Thus,
we can assume that p1(Py) < p1(P2) < p1(Ps). Consider two different Attacker strategies: 1) the
Attacker always chooses path P», and 2) for each packet independently, the Attacker chooses path
P, with probability % and path P; with probability 1 — Ziéiiiiiiﬁiz% = iiEﬁii%IZiEii%- Tn
both Attacker strategies, the probability that the Victim receives a 1 is p1(P), but the two cases
do not share any paths. Thus, if the Attacker chooses each of these two strategies with probability
1/2, the Victim cannot determine a path that is used by the Attacker with probability greater than
1/2. Also note that obtaining more packets does not give the Victim any information beyond a
better estimate of p;(P2), and thus increasing the number of packets received is not helpful.

With this motivation, we now see that for larger values of b, any encoding technique can be
represented as follows: for any path P in the lower bound model, let p;(P) be the probability
that the Network sends the Victim the binary representation of ¢, when the Network is given the
path P. In the upper bound model, p;(P) is the probability that a packet sent along path P arrives
at the victim with the bits set to the binary representation of i. In either model, each path P can
be represented by a vector V'(P) of length 2°, where component i of V/(P), for 1 <i < 2° —1, is
pi(P), and component 2° is po(P). In other words, V'(P) represents the probability distribution
over packets received by the victim for the path P. Since it must be the case that 21211 pi(P) =1,
we can represent this distribution as the vector V(P), which is the same as the vector V'(P) except
it does not have component 2°, and thus has length 2% — 1.

15

For any set of k path vectors, the attacker (or the Attacker) is able to cause the victim to see any
probability distribution over packets that corresponds to a convex combination of those vectors.
For our lower bound, we demonstrate that if b is too small relative to k, than there exist two disjoint
sets of path vectors S7 and Sy, each of size k, such that a convex combination of the vectors in .Sy
is equal to a convex combination of the vectors in S;. This implies that the Attacker can ensure
that no path being used can be correctly identified with probability greater than 1/2; and is a
generalization of the impossibility result described above for the case where k =2 and b= 1.

For our upper bound, we demonstrate how to provide a set of 2k-wise linearly independent path
vectors for any value of n. We also demonstrate that this is sufficient: 2k-wise linear independence
implies that any set of k£ path vectors can be uniquely decoded with high probability. Note that if it
were the case that 2k-wise linear independence were also a necessary condition for unique decoding
(this is not the case), then we would immediately have a lower bound of b > [log(2k + 1)], since
any smaller value of b would result in vectors with less than 2k components.

6 Lower bound for multiple paths of attack

In this section we provide an information theoretic lower bound on the value of b. We point out
that this bound applies to all previous PPM techniques for the case of multiple paths of attack.

Theorem 4 If b < log(2k — 2) and there are at least 2k paths out of which the k paths to be
determined are chosen, then the Attacker can cause a situation where regardless of how many
packets the Victim receives, it is not able to determine any path P such that P is one of the paths
of the Network with probability at least 1/2.

Proof: We first demonstrate that if the Attacker can cause the same distribution over packets to
be received at the Victim for two disjoint sets of paths, then the Attacker can ensure that no path
being used can be reliably identified. This formalizes and generalizes the intuition provided in the
previous section for the case where b =1 and k > 2. Given two sets of paths S; = {Py, Ps,..., P}
and Sy = {P{,P,,..., P}, we say that S; and Sy are convez equivalent if they each have size k
and there are probabilities Ai,..., A\g, Al,..., AL, with ¥ A =1and Y8 M =1, such that
2?21 AV (Pj) = Z?:l)‘;'V(P]{)‘

Lemma 4 For any protocol, if there exist two disjoint sets of paths S1 and Sy that are convex
equivalent, then the Attacker can create a situation such that the Victim is unable to return a single
path P that is held by the Network with probability greater than 1/2.

Proof: Let Ay be an Attacker strategy where the Network has the set of paths S, and the Attacker
chooses the path for each packet by choosing path P; with probability A; independently of the
choice for all previous packets. Let As be an Attacker strategy where the Network has the set
of paths Sy and the Attacker chooses path P; with probability \; independently of all previous
packets. For both Attacker strategies, the probability distribution over packets received by the
Victim is the same. Let W be the 2° — 1 dimensional vector that describes this distribution. We
consider the scenario where the Attacker chooses each of strategies A; and As with probability 1/2.

If, at the start of the attack, we reveal to the Victim some additional side information, in particular
the vector W, then (by what is referred to as the ”little birdie” principle) this cannot make the

16

Victim’s task any harder. If the Victim knows W, then the packets that arrive at the Victim do not
provide it with any additional information, since it knows W, and could simulate any such packets
without actually seeing them. Therefore, regardless of how many packets the Victim receives, the
Victim does not obtain any information past the vector W. However, with W, both strategy A;
and strategy As are equally likely. Since sets S; and S are disjoint, the Victim is not able to
determine any path that is in the set of paths used by the Attacker with probability greater than
1/2. |

To complete the proof of the Theorem, we show that if b < log(2k — 2) and there are at least
2k possible paths out of which the k paths used by the Attacker are chosen, then there exist two
disjoint sets of paths S; and S that are convex equivalent. Let the 2k paths be Py, Py, ..., Pop_1.
Let Z be the zero vector of dimension 2° — 1. We first show that we can assume V(Py) = Z.

Claim 6 If for any arbitrary V(Py)...V(Pay_1) and V(Py) = Z there exist two disjoint sets
of paths S1 and S that are conver equivalent, then it is also the case that for any arbitrary
V(Py)...V(Pa_1) there exist two disjoint sets of paths S1 and Ss that are convex equivalent.

Proof: We say that m and 7’ are disjoint half-permutations if they both are one-to-one mappings
from the integers in [1, k] to the integers in [0, 2k —1] and their ranges are disjoint. Given an arbitrary
set of path vectors V(Py)... V(Py_1), for 0 <i <2k —1, let V; = V(P;) — V(F). Thus, Vo =2

and we can assume that there are probabilities Ay ... Ag, Al, ... AL, vk L A; = 1 and Zk 1 A =1, as
well as disjoint half-permutations m and #’ with 7(1) = 0 such that Z 12V Z 1)\' ()-
This implies that
k
>NV (Pri) - Z NV —V(R)),
j=1
andsoz 1 AV (Prjy) = Ekl)\' (Pr(5))- [

Thus, we henceforth assume that V(P)) = Z. Furthermore, we can also assume that V(P;) #
Z, for ¢ > 0, since the theorem is trivial if two path vectors are the same. We say that path
vectors V(Pp),...,V(Pa—_1) are weakly convex equivalent if there exist po...pg, ...}, where
Vi, pu; > 0, and disjoint half-permutations 7 and 7’ with 7(1) = 0 such that 25:2 p; > 0, and
25:2 15V (Pr(jy) = 25:2 15V (Pri(jy)- Note that weakly convex equivalence is a property on a set
of 2k path vectors, where as convex equivalence is a property on two sets of k path vectors each.
Also, the definition of weakly convex equivalence, unlike the definition of convex equivalence, allows
for the possibility that 3¢, u; > 1.

Claim 7 If the set of path vectors V(FPp),...,V(Par—1) is weakly conver equivalent, then it can
be partitioned into two disjoint sets of paths S1 and S2, each of size at most k, that are convex
equivalent.

Proof: Let pa,..., [k, 1y, - -, 1), be the non-negative real numbers from the definition of weak
convex equivalence, and let 7 and 7' be the corresponding disjoint half-permutations. Thus, it
must be the case that

k k
Y1V (Pai)) = D 15V (Prrs)) (1)
= =2

17

Let Q = 32, pi, and let Q' = f:2 p;. We can assume w.l.o.g. that Q2 > Q1. The two disjoint
sets are S; = {P,r(l),. .. an(k)} and Sg = {P (1)~ 7P7r’(k)}' If we let)‘j = /‘j/Q% for 2 <j <k,

Ny = pi/Qa, for 2 < j <k, A = 1— @ and A} = 0, then we see that 335_; \; = 1, and
Z] 1 Aj = 1. Furthermore, it must be the case that Z] 1 AV (Priy) = Z] 1 AV (Pri(j)) since we
have merely multiplied both sides of (1) by a scalar, and added the Zero vector |

Thus, we only need to demonstrate that if b is too small with respect to k, then the set of path
vectors is weakly convex equivalent. If b < log(2k — 2), the dimension of the vectors is at most
2k — 3, and thus there must exist P; and P}, ¢,j > 0 and ¢ # 7, such that V(P;) and V (P;) are each
a linear combination of the 2k — 3 other non-zero vectors. We can assume w.l.o.g. that t =1 and
j = 2. Thus, there exist vy ...v9;_1 such that szl v;V(P;) = V(Py), where 1y = —1 and vy = 0.
Similarly, there exist 7y ... 72,1 such that S2*71n,V(P;) = V/(P,), where n; = 0, and 7y = —1.

Let T;" (T,") be the set of i such that v; > 0 (1; > 0, respectively), let T; (T,) be the set of i
such that v; < 0 (n; < 0, respectively), and let T (79) be the set of i such that v; = 0 (; = 0,
respectively). If |[T;"| < k — 1 and |T] | < k — 1, then we can show that the path vectors are
weakly convex equivalent by choosing I, ..., I} to be k — 1 distinct elements of the set T;" U T,
and I},..., I} to be k — 1 distinct elements of the set T} U Ty, where no element of the set 77 is
chosen for both the I;s as well as the Ijs. If we set p; = vy, m(i) = I, pu; = —vp, and «'(i) = I
for 2 < ¢ < k, then it must be the case that Z?ﬂ 15V (Prjy) = 25:2 15V (Pri(j)). Thus, we can
henceforth assume that either |T;"| > k or |77 | > k. In fact, since we could multiply all of the v;
by —1, we assume that |T;"| > k. Similarly, we can assume that |T, | > k.

Using the fact that |T% | > k, we see that there exists R such that for any r» > R, the number of
values of ¢ such that v; + rn; < 0 is at least k. Since |T1Jr | > k, there must exist some value s,
0 < s < R such that the number of values of ¢ such that v;+sn; > 0 is at most k—1, and the number
of values of ¢ such that v;+sn; < 0 is also at most k—1. Thus, we can show that the path vectors are
weakly convex equivalent by choosing I, ..., I} to be k—1 distinct integers ¢ such that v; +sn; > 0,
and I, ..., I} to be k — 1 distinct integers ¢ such that v; + sn; < 0, where no integer appears more
than once in Ip,..., Iy, Iy, ..., I. If we set pu; = vy, + sny,, ©(i) = I, pi = (VII + snl}), and
n'(i) = I] for 2 < i < k, then, again, it must be the case that Z] o 5V (Pr(jy) = Z] o 115V (Pri(j))-

This demonstrates that if b < log(2k — 2), then the set of path vectors is weakly convex equivalent.
Thus, by Claim 7 and Lemma 4, there is an Attacker strategy where there is no path P that the
Victim can determine such that the probability that P is held by the Network is greater than 1/2.
|

7 Upper Bound for Multiple Paths of Attack

We saw in the previous section that if there are two disjoint sets of paths S; and S» that are convex
equivalent, then the attacker is able to hide in the network. In this section we demonstrate how to
encode an arbitrarily large set of paths in such a way that the resulting vectors produce no such sets
S1 and Ss. In fact, our technique produces a set of vectors that satisfy a stronger criteria: every
set of 2k vectors is linearly independent. We also demonstrate that if the victim receives enough
packets, then with high probability this 2k-wise linear independence is sufficient for the victim to
determine every path that is used a large enough fraction of the time. Unfortunately, we do not
know of an efficient algorithm for finding the set of paths used by the attacker: the results of this

18

section merely demonstrate that (with high probability) the victim receives sufficient information
to uniquely determine the set of paths. Designing an efficient decoding algorithm is an important
open problem

Let d = 2° — 1. We consider a curve in d-dimensional space such that any set of 2k distinct vectors
with endpoints on this curve are linearly independent. With our encoding, the vector for every path
lies on this curve. This curve is defined in terms of a parameter ¢. Let V(t) be the d-dimensional
vector such that the ith component of V(t) is t!. As in the case of a single path of attack, let any
path P be described by bits By (P) ... B,(P), which specify the entire path (in the complete binary
tree) from the attacker to the victim. To determine a path P, it is sufficient to determine the value
Xp = 3", Bi(P)/2!. To encode the path P, we use the probability distribution defined by the
vector V(P) = V(;Xp).

We first demonstrate how to compute the vectors on this curve in a distributed fashion. Our
technique works correctly provided that b > [log(2k + 1)], i.e., that d + 1 (the number of possible
packets) is at least 2k + 1. This technique does not require the intermediate nodes of the network
to know the value of k; they are only required to know the value of b. Recall that p;(P) is the
probability that a packet sent along path P arrives at the victim with the bits set to i. We
describe a protocol for each of the distributed nodes such that p;(P) = (3Xp), for i > 0, and

po(P) =1~ %L, pi(P).
We define pf ; to be the probability that a node holding the bit e, for e € {0,1}, forwards the packet

j when it receives the packet i. Note that it must be the case that Vi, e, Z;'lzo p;; =1. When a
node holds the bit 0, the probability transitions are defined as follows:

e For 0 < i < d, pg,i =2"% and pg,o =1-27"
e Fori#j,and j #0, p}; =0.
o Py =1

When a node holds the bit 1, the probability transitions are defined as follows:
e For 1 <i<j<d pl;=2%"%()+27%
eFor1<j<i<dori=0<j<d, pj;=2"%.

e Forj=0<i<d,p;;=1- Zgzlpl{j'

Claim 8 For each possible packet received by a node, this protocol defines a valid probability dis-
tribution over packets that the node forwards. In particular, Vi,j,e, 0 < pf,j < 1, and Vi,e,

d
>j—opi; =1

Proof: The proof of this fact is easy for the case where e = 0, as well as the case where e = 1 and
t = 0. Thus, we here show that for any 7, 1 < i < d, Z?Zl p},j < 1. Since le,o =1- Z;-lzl p}yj, the
claim then follows. For any ¢, we see that

d d d .
T e)
j=1 i=1 j=i
Since we know that Z;l:l 2737 < 1 /7, we only need to demonstrate that the second sum is at most
6/7. We see that >.9_;2%%(J) = 27" 4+ Y9, 2%=37 (/). Since () < 27, this sum is less than

1 d 2i—25 _ 1 d—i 6—2j 5 6
§+Z]:z+12]_§+Zj:12]<§<7 |]

19

Claim 9 For any path P and 1 < j <d, p;j(P) = (%)].

Proof: We prove this by induction on n. We start with the inductive step: if we assume that the
claim is true for paths of length n — 1, we can show that it is true for paths of length n. Let p;(P)
be the probability that a packet sent on path P received by the node just prior to the victim has
the bits set to j. Since all nodes perform the same protocol, the inductive hypothesis gives us that

pi(P) = (2%2)’, where Xp = S0, B;(P)2'~". By the definition of the p?;, if By(P) = 0, then

pj(P) = 2795;(P), and thus p;(P) = (%)’ = (X2)’.

Similarly, for the case where Bi(P) = 1, we only need to show that p;(P) = (% + %)]. In the
following, we use the standard convention that (z) =0 1if j < i. We see that for all j > 0,

d
pi(P)=>_pi(P)p;; =
i—0

The base case of the inductive proof follows from a similar argument, since we assume that the
attacker must set all bits to 0 in the packets it transmits. [|

We next demonstrate that with high probability, this process provides the victim with information
that specifies all paths P that receive a large enough fraction of packets.

2
Theorem 5 After the victim has received 6 [ﬁ—k22(2k2+k)(”+2)] ln% packets, with probability at
least 1 — A, the victim is able to determine all paths P such that at least a fraction of 7 of the
packets the attacker sends travel along P.

Proof: We here provide the proof for the case where there are at least 2k possible paths for the
attacker to choose from; it is not difficult to remove this assumption. For simplicity, we also assume
that the encoding is done in such a manner that there is no path P such that Xp = 0. This can
be assured either by using an encoding of the paths that does not have such a path, or by having
the victim append a bit of 1 to the end of every path description. Denote the k paths used by the
attacker as P;...P,. Let \; be the fraction of the received packets that are sent by the attacker

20

along path P;. If the attacker uses only k' paths, for k' < k, then choose an arbitrary set of k — &’
other paths so that there are k distinct paths, and set the corresponding values of A\; = 0. The
probability that a randomly chosen packet from the set of received packets has its bits set to ¢ is

Z] 1 Ajpi(Pj). The set of received packets provides the victim with an estimate on the values
of the g;.

To build some intuition, we first assume that the victim knows the g; exactly, and demonstrate that
this uniquely determines the entire set of paths used by the attacker. We show that the assumption
that this is not the case leads to a contradiction. In particular, assume that there is some set
Py ... Py, of paths and probabilities \g 1 ... A such that Zle \V(P;) = Z] k1 AV (Pj).
For the set of paths to not be uniquely determined, it must be the case that there is some path P;
with A\; > 0 such that if j < k then P; & {Py41,..., P}, and if j > k then P; ¢ {Pl,...,Pk}.
Assume here that such a path is path Py;; the case where j < k is similar. In this case, we see that

2k—1
AoV (Poy) = ZA V(P)— > NV(P)). (2)
j=k+1

There may be paths that appear in both Py,..., P, and Pgy1,..., Ps,. However, by replacing any
such path with another unused path, we see that (2) implies that there is some set of 2k distinct
paths P| ... Py, and real numbers] ... A, with A}, > 0, such that

2k—1
oV (Poy,) = Z AV (3)

Now, consider the 2k x 2k matrix M where entry M;; = p;(P;). From (3), we see that M does

J
X \"*
not have full rank. However, from Claim 9, we see that M;; = (jj) . The matrix M', where

Xpr -l

entry Mj; = | —* , is a Vandermonde matrix. Since the paths P] ... Pj, are distinct, if ¢ # j

then Xpr # Xpr, and thus M’ has full rank. Since we assume that for all paths P, Xp # 0, this
i J

implies that the matrix M must have full rank as well, which is a contradiction. Therefore, the
exact values of the ¢; exactly determines all paths P;, 1 < j <k, such that Ay > 0.

We next examine the effect of the fact that the victim may not know the values of the g; exactly.
However, with high probability the victim determines a good estimate on all of the ¢; values. We
demonstrate that with such an estimate, any path that is used to send a large enough fraction of the
packets can be determined. The estimate used is as follows: for 1 <i <2k, let Y; be the number of

times that packet i is seen in the N = 6 [ﬁ—k22(2k2+k)("+2) In 2% packets. We set q; = Y;/N. The
victim returns any path P; such that P; is contained in a convex combination of at most k path

vectors, with the coefficient associated with P; being at least 7, such that the Euclidean distance

of the resulting convex combination from the corresponding point defined by the g;s is at most
Dy = %%2—(2k2+k)(n+2)_

We demonstrate that with probability at least 1 — A, the victim returns every path P such that a
fraction of at least 7 of the packets travel on P, and no paths that are not used by the attacker

21

at all. Let Dy = Z?ﬁl(qi — @;)?. Standard Chernoff bound techniques demonstrate that with N
packets, the values o, ..., Jar are such that Pr[D, > Dg] < A. Since the victim returns all paths
that it is required to return whenever D, < Dy, we only need to show that D, < Dy also implies
that there can be no path P not used by the attacker such that P is returned by the victim.

If such a path exists, then there must be some set of paths P; ... Py, where P; ... P;, are the paths
used by the attacker, Pjyi...Ps; are the paths contained in the incorrect convex combination,
and Py is the path returned incorrectly. Thus, Poy & {Py,..., P}, and there exist probabilities
AL ... Agg, With Agg, > 7, such that

2% [2 & 2
> (> Aipi(Py) - Z)\jpi(Pj)) < 2D,
=1

i=1 \j=k+1

This in turn implies that there are 2k distinct paths Pj, ..., Py, and real numbers] ...\, , with
bk = &, such that

2k 2k—1 2
> | Mowi(Pyy) — Z Nipi(P}) | < 2Dq (4)
i=1

Let D; be the Euclidean distance in ®?* from the point \! 5,V (Pyy,) to the subspace spanned
by V(P]),...V(Py,). For (4) to be true, it must be the case that D; < 2Dy. Thus, to

demonstrate that no such incorrectly returned path Py, can exist, it is sufficient to show that
Dy > 92~ (K +k)(n+2),

To see that this is the case, let V; be the 2k-dimensional volume of the parallelepiped defined by the
vectors V(P), ...,V (Py 1), AotV (Ps;) in R2% and let Vs, be the (2k — 1)-dimensional volume of
the parallelepiped defined by the vectors V(P{), ...,V (P4, ;) in R2*. We see that D; = i Since
all of the vectors V/(P{)...V(Pj,_,) have at most unlt length, Vo < 1. Due to the convenient form
of the vectors V(P]),...,V(P;), we can determine a lower bound on V;. In particular, a standard
result from linear algebra is that V; is equal to the absolute value of the determinant of the matrix
T, where column j of T, for 1 < j < 2k — 1, is V(P}), and column 2k is the vector A\a;V'(Py).

To compute |det(T')|, consider the matrix 7", where column j of T, for 1 < j < 2k, is XLP,V]-. By
j
Claim 9, the matrix 7" is Vandermonde, and thus

Xp Xpi
det(T') =] (f—T’)-

1<i<j<2k

Xp/ Xp]’_
4

k
Since for any ¢ # j, > sz, we see that |det(T")] > (#)(22). Since it is also the case

Xpr
that V7, ’ > 2n+2, this implies that

det(T)| = 7 (#)2’“ (2n1+2)(22"’)‘

2
(2 1)2k +k

Thus, V1 > %(2n1+2)2kz+k. This implies that D; > , completing the proof of the
theorem.]

22

We also point out that this use of Vandermonde matrices is fundamentally quite different from
how they have been previously used in coding theory. There are constructions of linear codes
where the generator matrix is Vandermonde (see, for example, [15]). On the other hand, in our
use of Vandermonde matrices, the ”codewords” themselves (i.e., the probability distributions over
packets) have the property that any set of 2k codewords form a Vandermonde matrix. In fact,
the traditional type of Vandermonde encoding was already used for PPM in [6], which relies on a
technique from [2]. We point out that their technique results in a PPM encoding that falls into the
class of protocols described in the introduction (where the victim only checks what packets it has
received, as opposed to how many of each it has received), and hence is subject to the logn lower
bound on b provided there.

8 Applications of the Model

In this section, we demonstrate that our upper bound model can easily be used to provide solutions
in a number of other models that are more representative of the real Internet. We demonstrate
this by considering three scenarios here. In one scenario, we encode the path information using a
sequence of IP addresses; this is the same information used in much of the previous work on PPM.
Such an encoding is appropriate when routers have no information about the network topology or
routing strategy other than their own IP address. In a second scenario we consider, nodes do know
the network topology and routing strategy, but they are no longer given the information of which
child forwards them a given packet. In the third scenario, we describe an efficient encoding for the
case where the underlying tree rooted at the victim is neither binary nor complete.

We first describe the case where nodes still know the entire routing topology, and the routing strat-
egy leads to a complete binary tree rooted at the victim, but nodes do not obtain the information
of which child they receive a given packet from. In this case, the information that is reconstructed
is slightly different: instead of being able to reconstruct a path that contains the attacker, this
information only allows us to reconstruct a path such that the attacker is a child of some node
along that path. We refer to this model as the source oblivious model, and the model used for the
bulk of the paper as the source cognizant model. We show that the two models are equivalent in
the following sense:

Claim 10 Any protocol for the source cognizant model for a tree of height n provides a protocol for
the source oblivious model for a tree of height n — 1. Any protocol for the source oblivious model
for a tree of height n provides a protocol for the source cognizant model for a tree of height n + 1.

Proof: To simulate a protocol for the source cognizant model in the source oblivious model, each
node simply does exactly what its parent would do in the source cognizant model. Each node
clearly has enough information to do this. The parent of the attacker follows the source oblivious
protocol correctly, and this simulates the parent of the parent of the attacker following the source
cognizant protocol correctly. Thus, the path is followed correctly back to the parent of the attacker.

For the reverse simulation, each node IV does exactly what its child N, on the path would do in
the source oblivious protocol on receiving the bits that N receives. In the case that N, is actually
the attacker, the node N simulates what N. would do if it were not the attacker, but a child of N,
were the attacker. Since the node N has the information of which child it receives a packet from,

23

N has enough information to perform such a simulation. This gives the source cognizant protocol
the ability to obtain a path that contains the attacker. [|

We next consider the case where neither the victim nor the nodes have any information about
the network topology, nor does a node see the information of which child sends it a packet. Each
node simply knows its own unique ID, and our task is to inform the victim of an n-bit string that
represents the concatenation of the unique IDs of the nodes along the path of attack. These IDs
might for example correspond to IP addresses. To use any of the protocols we have developed for
the upper bound model in such a scenario, each node, on receiving a b-bit packet from a preceding
node would simulate a complete binary tree of height h in the source oblivious model, where h is
the length of its unique ID. The leaf of the tree that the node simulates starting with the packet is
the leaf with a path description that is the same as the unique ID of the node. Using this technique,
the overall string received by the victim is the concatenation of the node IDs. Note that with this
technique, nodes can have different unique ID lengths.

Finally, we consider the case where the victim knows the entire routing topology, and also each
node is able to see which child it receives a given packet from, but the underlying tree is not binary.
For this model, we could use the same technique of using unique IDs for the nodes along the path
of attack, but instead we present a more efficient encoding of the path. In particular, for every
node N of the tree, we represent what child of that node is the predecessor of N in the attacker’s
path of attack using a Shannon code, where the distribution used in the code is the distribution
over the children of NV when a node of the subtree rooted at N is chosen uniformly at random.

Claim 11 The mazimum number of bits required to represent any path using this scheme is at
most h + logm, where m is the number of nodes in the system, and h is the height of the tree.

Proof: Let Cy...Cy be the sequence of code words used along any path from the victim to a leaf
node. Let T; be the number of children in the subtree rooted at the jth node of this path. Since

we are using a binary Shannon code, Ti - > 21Cil=1. Since Ty = 1 for any path, we have that

T
. L
Ty =15 TjTil, and so Ty > 20211902 Since m > Ty, logm > (224, |C|) — ¢, from which the
claim follows. m

To use our protocols for the upper bound model to actually compute this encoding, consider some
node R on the path of attack with ¢ children, and corresponding code words C ... C. On a message
received from child j, node R simulates what would occur in the source cognizant model with a
binary tree of height |Cj| when the child specified by C; receives a packet from the attacker. This
provides a mechanism for encoding the string Cj.

9 Conclusion

We have studied two scenarios for using PPM to solve the IP traceback problem: the case of a
single path of attack, and the case of multiple paths of attack. For a single path of attack, we have
introduced a new encoding technique that is significantly more efficient than previous techniques.
We have also demonstrated how to tradeoff header bits for packets received, as well as a lower
bound that shows how close to optimal our tradeoff is. For the case of multiple paths of attack, we
have provided a lower bound on the number of bits required as a function of the number of paths

24

of attack. We have also provided a nearly matching upper bound that applies to some restricted
scenarios.

A number of interesting open problems remain. For the case of a single path of attack, it would be
interesting to close the gap between the upper and lower bounds on the optimal number of packets
required for a given number of header bits. For the case of multiple paths of attack, there are still
significant gaps in our understanding of PPM. One interesting question is designing a protocol that
does not require the restrictions on the attacker used by the protocol of Section 7. Furthermore, we
have not addressed the issue of computational efficiency with respect to the decoding portion of that
algorithm: it only provides an encoding that information theoretically specifies the correct paths.
Finally, to obtain a complete understanding of the problem, we must incorporate the number of
packets into the results for multiple paths of attack. In particular, we would like to obtain matching
upper and lower bounds on the tradeoffs between the number of bits used, the number of paths of
attack, as well as the number of packets required.

10 Acknowledgments

The author would like to thank John Byers and Faith Fich for numerous helpful conversations and
insightful suggestions. Thanks especially to Faith Fich for her help in simplifying the model for the
protocols. A preliminary version of this paper appeared in [1]

References

[1] Micah Adler, Tradeoffs in Probabilistic Packet Marking for IP Traceback, In Proc. of ACM
Symposium on Theory of Computing, May 2002.

[2] Sigal Ar, Richard Lipton, Ronitt Rubinfeld, and Madhu Sudan, Reconstructing Algebraic
Functions from Mixed Data. In Proc. of 38'¢ Annual Symposium on Foundations of Computer
Science, pp. 503-512, October 1992.

[3] S. M. Bellovin, ICMP Traceback Messages. Internet Draft: draft-bellovin-itrace-00.txt, Mar.
2000.

[4] Hal Burch and Bill Cheswick, Tracing Anonymous Packets to Their Approximate Source. In
Proc. Useniz LISA 00, 2000.

[6] Sven Dietrich, Neil Long, and David Dittrich, Analyzing Distributed Denial of Service Attack
Tools: The Shaft Case. In Proc. 1/th Systems Administration Conference, LISA 2000.

[6] Drew Dean, Matt Franklin, and Adam Stubblefield, An Algebraic Approach to IP Traceback.
In Proc. 2001 Network and Distributed System Security Symposium.

[7] Thomas Doeppner, Philip Klein, and Andrew Koyfman. Using router stamping to identify the
source of IP packets. InProceedings of the Tth ACM Conference on Computer and Communi-
cations Security, pages 184-189, Athens, Greece, November 2000.

[8] P. Ferguson and D. Senie, RFC 2267: Network Ingress Filetring: Defeating Denial of Service
Attacks which employ IP Source Address Spoofing. The Internet Society, 1998.

25

[9]

[10]

[11]

[12]

S. Floyd and V. Jacobson, Random Early Detection gateways for congestion avoidance.
IEEE/ACM Transactions on Networking, 1(4), August 1997.

S. Lee and C. Shields, Tracing the Source of Network Attack: A Technical, Legal and Societal
Problem. In Proceedings of the 2001 IEEE Workshop on Information Assurance and Security,
June 2001.

Rajeev Motwani and Prabhakar Raghavan, Randomized Algorithms. Cambridge University
Press, New York, NY, 1995.

K. Park and H. Lee. On the effectiveness of probabilistic packet marking for IP traceback
under denial of service attack. In Proc. IEEE INFOCOM ’01, pp. 338-347, 2001.

K. Park and H. Lee. On the effectiveness of route-based packet filtering for distributed DoS
attack prevention in power-law internets. To appear in Proc. ACM SIGCOMM ’01, August
2001.

C. Perkins, IP Mobility Support. RFC 2002, Oct. 1996.

L. Rizzo. Effective Erasure Codes for Reliable Computer Communication Protocols. ACM
Computer Communication Review, Vol. 27, n.2, pp. 24-36, April 1997.

Stefan Savage, David Wetherall, Anna Karlin and Tom Anderson, Practical Network Support
for IP Traceback. In Proceedings of ACM SIGCOMM 2000 , pp. 295-306, August 2000.

Alex C. Snoeren, Craig Partridge, Luis A. Sanchez, Christine E. Jones, Fabrice Tchakountio,
Stephen T. Kent, and W. Timothy Strayer. Hash-Based IP Traceback. To appear in Proc.
ACM SIGCOMM 2001, August 2001.

Dawn X. Song and Adrian Perrig, Advanced and authenticated marking schemes for IP trace-
back, In Proc. IEEE INFOCOM ’01, 2001.

26

