Lecture 3: Instruction
Set Architecture

ISA types), register usage,
memory. addressing), endian
and alignment, quantitative

evaltation

Stack

mplicit operands on stack

Good code density; used in
60’s-70's; now in Java VM

General-purpose Registers

¢ General-purpose registers are preferred by
compilers
~ Reduce memory: traffic
— Improve program speed
— Improve code density
» Usage of general-purpose registers.
— Holding temporal variables in expression evaluation
— Passing parameters
— Holding variables
¢ GPR and RISC andl CISC

— RISE ISA is extensively used forr desktop) server, and
embedded: MIPS, PowerPC, UltraSPARE, ARM|, MIPS16),
Thumb

— CISC: 1BM 360/370, VAX, andlIntel 80x86.

What |s ISA?

Instruction set architecture is the structure
of a computer that a machine language
programmer (or a compiler) must
understand to write a correct (timing
independent) program for that machinge.

For' IBM System/360, 1964

¢ Class ISA types: Stack, Accumulator, and
General-purpoese regjster

¢ ISA Isimature and stable
~ Why/ do we study it?

Accumulator

The accumulator provides an
implicit input, and is the
implicit place to store the
result.

¢EX.C=A+B
Load Ri, A
Add R3, R1l, B
Store R3, ¢

+ Used befiore 1980

Variants of GRP Architecture

¢ Number of operands in ALU instructions: two or
three
Add R1, R2, R3 Add R1, R2

+ Maximal number of memory operands in ALU
instructions: zero, one, two, or three
Lload R1, A Load R1, A
Load/R2, B Add R3, R1, B
Add R3, R1, R2

+ Three popular combinations
= regjster-regjster (load=stere)k 0/ memory, 3 operands;
— regjster-memory: 1 memory, 2 operands;

— MEMOKY-MEmoKy: 2 Memories, 2 operands; or' 3
MEMOries), 3l operands

Register-memory

o There is no implicit
operand

o One input operand is
register, and one in

Load R1,
Add R3, Ri, B
Storse BRI, C
¥ Processors include VAX,
B80X86

How Many Registers?

If the number of registers increase:

Allocate more variables in registers (fast
accesses)

» Reducing code spill

t Reducingl memory traffic

Longer register specifiers (difficult encoding)

Increasing register access time (physical
registers)
More regiSters) to saverin context switeh

MIPS64:: 32 general-purpose registers

Memory Addressing

Instructions see registers, constant values, and memory

+ Addressing mode decides how to specify an object to access
— Object can be memory location, register, or a constant
— Memory addressing is complicated
+ Memory addressing invoelves many; factors
Memory addressing mode
Object size
byte ordering
alignment

Eor aimemory: location, its effective address: is calculated in a
centain form of register content, immediate address, and
PC, as specified by the addressing mode

Register-register (Load-store)

+ Both operands are registers
+ Values in memory must be
loaded into a register and
stored back
eExX.C=A+1B

Load R1, P2
L l R2, B
Add B3, Ri, R2
Store R3, C

» Processons: MIPS), SPARE

ISA and Performance

CPU time = #inst x CPI x cycle time

¢ RISC with Register-Register instructions
+ Simple, fix-length instruction encoding
¢ Simple code generation
¢ Regularity in CPI
Higher instruction counts
Lower instruction density:

+ CISC with Register-memory instructions:
o No extra lead in accessing data in memory.
o Easy encoding
Operands| being not eguivalent
Restricted #registers due to encoding memory address
Irregularity: in CPI

Little or Big: Where to Start?

¢ Byte ordering:
Where is the first Number 0x5678
byte? Little-endian Big-endian
+ Big-endian:1BM,
SPARC, Mororola
¢ Little-endian: Intel,
DEC 00000003
¢ Supporting| beth: 00000002
MIPS S POWEPE

Alignment

Align n-byte objects on n-byte
boundaries (n =1, 2, 4, 8)

¢ One align position, n-1 misaligned
positions

s Misaligned accesstis undiserable
— ExXpensivel logic, slow! references

o Aligning) in| registers may: be
necessaly fior bytes) andhalFwerds

Storage Used by Compilers

Register storage

~- Holding temporal variables in expression
evaluation

— Passing parameters
- Holding| variables

Memory storages consists ofi
~ Stack: to hold! local variables

~ Global data area: to hoeld statically declared
objects

~ Heap: torhold dynamic ebjects

Choosing of Memory Addressing
Modes

Choosing complex addressing modes
Close to addressing in high-level language
i May reduce instruction counts (thus fast)

Increase implementation complexity: (may.
increase cycle time)

Increase CPI

RISE ISA comes Withi Siniplermiermory
gdadressing), ahd CISCISANWIL CoIpIEX
OnES

MIPS Data Addressing Modes

+ Register
ADD $16, $7, $8

+ Immediate
ADDI $17, $7, 100

» Displacement
LW $18), 100($9)

Only/ therthreel arer supported. fordatar addressing

14

Memory Addressing Seen in
CISC

Direct (absolute) ADD R1, (1001)
Register indirect SUB R2, (R1)
Indexed ADD R1, (R2 + R3)
Scaled SUB R2,
Autoincrement 100(R2)[R3]
Autodecrement ADD R1, (R2)+

Memory indirect SUBR2)=(R1)
ADD) R1, @(R3)

ARd miore . (See textbook po8)

How Often Are Those Address
Modes?

Usage of address modes, VAX machine, SPEC89

Usage of Immediate Operands In
RISC

I Floating-point average
B Integer average

Alpha, SPEC CINT2000 & CFP2000

Displacement Size in RISC

Displacement bit size: Alpha ISA, SPEC
CPU2000 Integer and FP

Dynamic Instruction Mix (MIPS)

SPEC2K Int SPEC2K FP
Load 26% 15%
Store 10% 2%
Add 1995 23%
Compare 5% 2%
Cond br 12% 45/
Cond! myv, 2% 0%
Jump 1% 0%
[LOGIC 18%% 4075
EPoad 15%)
EP’store 7Yb6;
EP others 19%

Immediate Size in RISC

Alpha, SPEC CINT2000 & CFP2000

Operands size, type and format

+ In MIPS Opcode encodes operand size
- Ex. ADD for signed integer, ADDU! for unsigned integer,
ADD.D for double-precision FP

» Most common types include
— Integer: complement binary numbers
— Character: ASCII

~ Floating point: IEEE standard 754, single-precision| or
double-precision

¢ Decimal format
— 4-bits for one decimal digjt (0-9)), one byte for two
decimal digjts
= Necessary: for business applications
» Fixed Point format inf DSP. processors:
— Representing firactions in (=1, 1)
— 110004015 .4 poine= -0-1000101,

Architectures change for the needs of compilers
* How do compilers use registers? How many?

* How do compilers use addressing modes?

* Anything that compilers do not like?

